首页> 外文会议>SAE World Congress and Exhibition >Eddy-resolving Simulations of the Notchback ‘DrivAer’ Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour
【24h】

Eddy-resolving Simulations of the Notchback ‘DrivAer’ Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour

机译:Notchback'Drivaer'模型的涡流模拟:底部几何形状和车轮旋转对空气动力学行为的影响

获取原文

摘要

The present work deals with a computational study of a ‘DrivAer’ car model, the rear-end shape of which corresponds to the Notchback configuration (Heft et al. [1] and Heft [2]). The study investigates the effects of the underbody geometry and wheel rotation on the aerodynamic performance. The configurations with detailed and smooth underbody as well as with stationary and rotating wheels are considered. The computational model applied relies on a VLES (Very Large Eddy Simulation) formulation, Chang et al. [3]. The residual turbulence related to the VLES framework is presently modelled by a RANS-based (Reynolds-Averaged Navier-Stokes), four-equation (D(k,ε,ζ, f)/Dt) near-wall eddy-viscosity model, Hanjalic et al. [4]. In addition to the equations governing the kinetic energy of turbulence (kus) and its dissipation rate (?us), it solves a transport equation for the quantity, representing a key parameter, as it models the velocity scale in the expression for the corresponding turbulence viscosity. In addition to VLES, all considered flows are simulated within both RANS and Unsteady RANS (URANS) frameworks using the same background model formulation representing the constituent of the VLES method. Whereas the “k-ε-ζ-f” model describes fully-modelled turbulence within the RANS/URANS method, it relates to the unresolved sub-scale turbulence within the VLES framework (the relevant quantities are denoted by the subscript ‘us’). Unlike the RANS/URANS method, the VLES method is capable of capturing the spectral dynamics of turbulence to an extent complying with the underlying grid resolution. Accordingly, the superiority of the VLES method is especially visible at the computed evolution of the aerodynamic coefficients, agreeing reasonably well with the experimental database.
机译:目前的工作处理了“驱动器”车型的计算研究,其后端形状对应于Notchback配置(Heft等人[1]和Heft [2])。该研究调查了底部几何形状和车轮旋转对空气动力学性能的影响。考虑了具有详细和光滑的配置以及与固定和旋转轮的配置。应用依赖于VLES(非常大的涡模拟)配方,Chang等人依赖于VLES(非常大的仿真)。 [3]。与VLES框架相关的残余湍流目前由RAN基于RAN(reynolds-verived Navier-Stokes),四方程(d(k,ε,ζ,f)/ dt)近壁涡粘度模型, Hanjalic等人。 [4]。除了控制湍流(KUS)的动能的方程(kus)及其耗散率(Δs)之外,它还解决了表示关键参数的数量的传输方程,因为它在表达式中为相应的湍流模拟了速度比例粘度。除了VLES之外,所有考虑的流量都使用相同的背景模型配方模拟了代表VLES方法的组成的相同的背景模型制定。虽然“K-ε-ζ-f”模型描述了RAN / URANS方法内的完全建模的湍流,但它涉及VLES框架内的未解决的子级湍流(相关量由下标'US'表示) 。与RAN / URANS方法不同,VLES方法能够在符合底层网格分辨率的程度上捕获湍流的光谱动态。因此,在空气动力学系数的计算演进中,VLES方法的优势在空气动力学系数的计算中尤其可见,与实验数据库相当合理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号