首页> 外文会议>SEM International Congress Exposition on Experimental and Applied Mechanics >Realization and Dynamic Studies of CNTs-PDMS Membranes for Biomimetic Flapping Wing Applications
【24h】

Realization and Dynamic Studies of CNTs-PDMS Membranes for Biomimetic Flapping Wing Applications

机译:用于仿生型翼翼应用CNTS-PDMS膜的实现与动态研究

获取原文

摘要

Aerial and aquatic animals including bats, insects and fish use their wings/fins to generate propulsive forces. Natural fliers deform their wings, actively and/or passively, in bending and twisting modes to generate lift and thrust. Within a flapping cycle, wing skin interacts with surrounding fluid and transfers dynamic loads to the internal stiffening structure. Biomimicking of such complex natural flapping wings is possible if the development involves both materials and structural aspects. In the present study, thin PDMS films are chosen for developing the skin of the biomimetic flapping wings. The films are first characterized for dynamic mechanical properties (storage modulus, loss modulus and loss factor) using a dynamic mechanical analyzer. The tests are done in frequency and strain sweep modes to analyze the effect of strain-rates and strain-amplitudes on the dynamic mechanical properties and generate experimental data for constitutive modeling. The dragonfly and cicada wings are taken as the bioinspiration for developing the biomimetic wings. The fabrication of wing skeletons and their integration with the PDMS membranes are achieved through advanced manufacturing techniques including laser micromachining, photolithography and casting. Two types of composite materials are used for making the wing skeletons, i.e., carbon nanotubes (CNTs)/polypropylene (PP) nanocomposite sheet for cicada inspired wing and carbon fiber/epoxy composite strands for dragonfly inspired wing. Structural dynamic analysis of such light, flexible and small size biomimetic structures are interesting and useful for evaluation of biomimicking performance of used materials and manufacturing methods, but difficult to perform. A real-time high-speed non-contact dynamic testing method based on DIC-FPGA coupling (3D digital image correlation technique coupled with real-time data acquisition system, developed at our lab) is used for determining the natural frequencies and corresponding mode shapes of fabricated wings.
机译:空中和水生动物,包括蝙蝠,昆虫和鱼类使用它们的翅膀/翅片产生推进力。天然飞行员以弯曲和扭曲模式,主动和/或被动地使其翅膀变形,以产生升力和推力。在拍打周期内,翼状皮肤与周围的流体相互作用,并将动态载荷转移到内部加强结构。如果显影涉及材料和结构方面,则可以进行这种复杂的自然拍打翅膀的生物捣蛋。在本研究中,选择薄的PDMS薄膜用于显影仿生拍翼的皮肤。首先使用动态机械分析仪的动态机械性能(储存模量,损耗模量和损耗因子)的特征。测试是在频率和应变扫描模式下进行的,以分析应变率和应变幅度对动态机械性能的影响,并产生本构型模拟的实验数据。蜻蜓和蝉翼被视为发展仿生翅膀的生物悬浮液。翼骨架的制造及其与PDMS膜的整合通过包括激光微机械,光刻和铸造的先进制造技术来实现。两种类型的复合材料用于制造粉末骨架,即Cicada的碳纳米管(CNT)/聚丙烯(PP)纳米复合材料,用于蜻蜓启发翼的翼和碳纤维/环氧复合股。这种光,柔性和小尺寸的仿生结构的结构动力学分析很有趣,可用于评估使用的材料和制造方法的生物剥削性能,但难以进行。基于DIC-FPGA耦合的实时高速非接触式动态测试方法(与我们的实验室开发的实时数据采集系统耦合的3D数字图像相关技术)用于确定自然频率和相应的模式形状制造的翅膀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号