首页> 外文会议>WGP Congress >Precise Prediction of Microstructural Properties with Minimal Experimental Effort for the Nickel-Base Alloy Inconel 718
【24h】

Precise Prediction of Microstructural Properties with Minimal Experimental Effort for the Nickel-Base Alloy Inconel 718

机译:镍基合金Inconel 718的最小实验努力精确预测微观结构性能718

获取原文
获取外文期刊封面目录资料

摘要

The prediction of microstructure evolution in addition to the macroscopic material strength, material flow and temperature evolution is becoming increasingly important as more and more complex materials, with properties that are heavily influenced by their microstructure, are being used. This in turn requires refined microstructure models to be parameterized. Compared to flow curve models, the experimental effort for the parameterization of microstructure models increases due to the inclusion of grain size and recrystallization effects. Therefore plenty of experiments are usually performed to fully characterize the material at hand. The increasing versatility of testing machines, like dilatometry with easily variable temperatures, in addition to the growing expenses that go along with increasing the number of experiments for high cost materials, leads to the question whether performing all those experiments is really justified. In this paper the microstructure model StrucSim is parameterized for the nickel-base alloy Inconel 718 and coupled online with a finite-element (FE) simulation to predict the material behaviour during double compression tests. StrucSim combines multiple constitutive equations into a single consistent material model representing also the microstructure. Therefore these constitutive equations are parameterized to their respective metal-physical phenomena to find the initial parameters for StrucSim. Afterwards the set of final parameters is determined by optimizing the initial parameters using the StrucSim algorithm interconnecting the constitutive equations to define a reference model. The reference model is later compared to different final parameter sets parameterized based on reduced experimental data. Beforehand the reference model is coupled with the FE software Simufact.forming to simulate double compression tests and compare them to experiments as a validation of the reference model. Here forces are predicted with a mean deviation (root of the sum of squared relative errors) of 7.6 % and grains sizes with a mean deviation of about 8 μm from the measurements. Afterwards the influence of reducing the available data during parameterization of StrucSim is investigated to evaluate the possibility of reducing the experimental effort. It is shown that when using only 50 % of the data the quality can be maintained with the reduced model. When simulating the double compression tests a comparable deviation regarding the forces and grain sizes is achieved. Reducing the number of experiments by 50 % during materials characterization therefore appears feasible.
机译:除了宏观材料强度,材料流动和温度越大之外的微观结构演化的预测变得越来越重要,作为越来越复杂的材料,使用它们的微观结构受到严重影响的性质。这又需要参数化精细的微观结构模型。与流动曲线模型相比,由于包含晶粒尺寸和再结晶作用,微观结构模型参数化的实验性能增加。因此,通常进行大量的实验以完全表征手头的材料。试验机的多功能性,类似于易于变化的温度的膨胀性,除了增加高成本材料的实验数量的日益增长的费用外,是否会导致执行所有这些实验的问题真实合理。在本文中所述的微结构模型StrucSim被参数化的镍基合金铬镍铁合金718,并用有限元(FE)模拟线上耦合到预测期间双重压缩试验用的材料的行为。 Strucsim将多个组成型方程组合成单个一致的材料模型,其也表示微结构。因此,这些本构方程被参数化为各自的金属物理现象,以找到Strucsim的初始参数。之后通过使用互连本构式方程来定义参考模型来确定初始参数来确定最终参数集。基于降低的实验数据,参考模型稍后与不同的最终参数集进行比较。事先,参考模型与FE软件SIMUFAFT.Forming耦合以模拟双压缩测试,并将它们与参考模型的验证进行实验。这里预测力的平均偏差(平方相对误差之和)为7.6%,并且谷物尺寸从测量测量的平均偏差约为8μm。之后,研究了在STRUCSIM参数化期间减少可用数据的影响,以评估降低实验努力的可能性。结果表明,当使用仅50%的数据时,可以使用缩小的模型保持质量。当模拟双压缩测试时,实现了关于力和晶粒尺寸的可比偏差。因此,在材料表征期间减少50%的实验数目似乎是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号