首页> 外文会议>International Conference on Tissue Engineering >Development of a spinal fusion cage by multiscale modelling: application to the human cervical spine
【24h】

Development of a spinal fusion cage by multiscale modelling: application to the human cervical spine

机译:多尺度建模的脊柱融合笼的发展:应用于人类颈椎的应用

获取原文

摘要

This work presents a design approach to obtain a cage to enhance the fusion between adjacent vertebrae of the cervical spine. This approach makes use of a multiscale model for topology optimization of structures to define the cage microstructure. The cage is designed in order to respond to the structural requisites for load bearing as well as to the requirements of osteoconductivity to promote the bone formation within the fusion domain. The design domain is the intervertebral space that will be filled with the bone substitute (scaffold) which is considered a periodic porous structure characterized by a representative unit-cell. The topology of the unit-cell is defined in order to obtain the optimal equivalent properties for stiffness and permeability, which are computed using an asymptotic homogenization method. So, the optimization goal is to obtain the stiffest cage structure for the local strain/stress field through the solution of a global finite element model of a human cervical spine. A constraint on the cage microstructure permeability is assumed to obtain interconnected porosity necessary to bone cell migration and nutrient supply. The final cage design presents interconnectivity in all spatial directions and the elastic properties meet the stiffness requirements. This design approach has revealed to be very useful to design site-specific scaffolds for bone regeneration, in particular for interbody fusion, since each cage is defined for a specific mechanical environment obtained by the mechanical analysis of the whole organ.
机译:这项工作提出了一种设计方法来获得笼子以增强颈椎相邻椎骨之间的融合。这种方法利用了用于拓扑结构的多尺度模型,该结构的结构优化以定义笼式微观结构。设计笼以响应承载的结构必需品以及骨导电性的要求,以促进融合域内的骨形成。设计结构域是将填充有骨替代(支架)的椎间空间,其被认为是由代表性单元细胞的周期性多孔结构。定义了单位细胞的拓扑,以便获得使用渐近均质方法计算的刚度和渗透率的最佳等效性。因此,优化目标是通过人颈椎的全球有限元模型的解决方案来获得局部应变/应力场的最硬笼结构。假设对笼式微观结构渗透率的约束获得骨细胞迁移和营养供应所需的相互连接的孔隙率。最终的笼式设计在所有空间方向上呈互连,弹性特性满足刚度要求。这种设计方法表明,为骨再生设计特定的特定机构支架非常有用,特别是对于椎体融合,因为每个笼子被定义为通过整个器官的机械分析获得的特定机械环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号