首页> 外文会议>AusIMM International Uranium Conference >Ranger 3 Deeps – Orebody Knowledge and its Impact on Resource Modelling
【24h】

Ranger 3 Deeps – Orebody Knowledge and its Impact on Resource Modelling

机译:游侠3深度 - 矿体知识及其对资源建模的影响

获取原文

摘要

The Ranger 3 Deeps (R3D) mineral resource is a structurally and lithologicallycontrolled uranium deposit localised by a NNW-trending zone of reversefaulting and deformation, the Deeps Fault Zone (DFZ). High-grade uraniummineralisation occurs within this zone when the right conditions of rockchemistry, breccia permeability and fault orientation are satisfied.The R3D uranium deposit was discovered in 2005 and has been drilledout in successive surface diamond drilling campaigns up to 2010. It is nowrecognised that the deposit, though hosted in similar stratigraphy, hassignificant differences in controls to that described in the existing model forthe Ranger 3 mineralising system observed in Pit 3, (some 400 m up-dip)where the host mineralised breccias were thought to be the product of astructurally modified ‘karstic collapse’ system. In 2012, a detailed structuralstudy utilising existing surface exploration drilling was commissionedby Energy Resources of Australia Pty Ltd (ERA) to develop a structuralstratigraphicunderstanding of the R3D system aimed ultimately at arationalisation of robust ore domaining for resource estimation prior to thecurrent R3D prefeasibility study.The majority of uranium mineralisation in R3D is hosted by an interconnectednetwork of brecciation developed within and around an upward-soling,brittle reverse fault system, the DFZ. The DFZ soling is controlled by thecompetency contrast of the local Cahill Formation mine stratigraphy. Thisstratigraphic sequence comprises lower mine sequence (LMS) carbonatesand upper mine sequence (UMS) chlorite schists and quartz-chlorite-biotiteschists (meta-arenites). The UMS chlorite schist (which hosts the majority of the resource) focuses the soling of the DFZ by acting as the weakest unitof the mine stratigraphy sandwiched between the underlying massive LMScarbonates and the overlying competent meta-arenites. This competencycontrast is hypothesised to directly reflect the depositional character of themine stratigraphy. Traditional use of a metamorphic lithology description,coupled with a reliance on geochemical alteration assemblage logging,has obscured the structurally important competency makeup of the minestratigraphy. The reintroduction of interpretive proto-lithology logging hasrefocused process analysis of the R3D system and has led to the currentstructural model.Structural logging to identify actual faults where movement was evidentand quantifying the associated ‘damage’ zones (where the uraninite ishosted) was also a key element in redefining the new structural model. Themapping of brecciation intensities and fault locations is now part of theroutine logging of drill core generated by the resource definition drillingprogram. The association of high-grade uranium mineralisation andbrecciation intensity is now unequivocal. In the core of the DFZ, multipleclose-spaced soling fault ‘strands’ coalesce these breccia zones to form themost continuous, highest grade parts of the resource that decreases up-dipas the system attenuates.Within the LMS carbonates, the DFZ is a steeply east dipping, NNWtrendingreverse fault that exhibits intense brecciation and silicification ofthe host carbonate. Significant high-grade uranium mineralisation occurswhere the fault intersects narrow (1–10 m thick) bedded, lenticular, highlydeformed chlorite schists within the massive carbonates. This mineralisationoccurs up-dip of the DFZ within the brecciated schist and suggests anascending fluid source that precipitates uranium when in contact with areactive lithology. Due to the limited drilling density within the LMS, morecomplex controls on mineralisation and constrained volumes of reactivestratigraphy when compared to the UMS, the highest confidence category inthe LMS resource is ‘Indicated’ within the current resource model.The resolution of the principal controls on uranium mineralisationhas allowed the understanding of the likely geometry of R3D. In turn,this has allowed increased confide
机译:Ranger 3 Deeps(R3D)矿产资源是由逆转带和变形的NNW趋势区域定位的结构和岩石上的铀矿床,深度断层区(DFZ)。当摇滚化学,安全性渗透率和故障取向的正确条件感到满足时,在该区内发生高级铀蛋白。R3D铀矿床是在2005年发现的,并在2010年的连续表面钻石钻探活动中进行了钻探。现在,它是现在的押金,虽然托管在类似的地层中,但是对坑3中的现有模型中描述的对照中描述的对照中描述的仇恨差异,(约400米上浸)被认为是Astructulally的产物的宿主矿化的Breccias修改的“岩溶崩溃”系统。 2012年,利用现有的表面勘探钻探的详细结构研究是澳大利亚PTY LTD(时代)的能源资源开发了对R3D系统的结构,最终旨在为资源估算进行资源估算,以进行资源估算。大多数R3D中的铀矿化是通过在向上溶解,脆性反向故障系统,DFZ内部和围绕和围绕的纤细的布发串的互连网络托管。 DFZ辅助由当地Cahill形成矿地层定粒图的占卜对比度控制。该序列序列包括下矿序列(LMS)碳酸盐和上矿序列(UMS)氯酸盐裂血分子和石英 - 氯酸盐 - 生物酸盐(Meta-Arenites)。 UMS Chlerite Schist(其中大多数资源)通过作为夹在底层大规模LMSCONENBATE和覆盖的竞争性META-植物之间的矿山地层和覆盖的主管常规诱使之间的最弱单元来聚焦DFZ的辅助。该竞争力的竞争力被假设直接反映了主题地层的沉积特征。传统使用变质岩性岩性描述,再加上依赖地球化学改变组合测井,这掩盖了细结构重要的能力化妆。重新引入解释性原型测井R3D系统的散发过程分析,并导致了电影结构模型。结构测井识别运动是evidentand的实际故障,量化相关的“损坏”区域(铀酸盐ishosted)也是一个关键重新定义新结构模型的元素。 Brecciation强度和故障位置的主题现在是由资源定义钻井编程生成的钻机核的记录的一部分。高级铀矿化和爆发强度的关联现在是明确的。在DFZ的核心中,多重leclose - 间隔的肉类肉肉肉串,这些Beccia区的Coolesce将其形成了对比的资源的最高级别,减少了up-Dipas系统衰减。在LMS碳酸盐中,DFZ是一个陡峭的东方浸渍,NNWTringRevereStreverse表现出强烈的碳酸盐的强烈的粘度和硅化。大量高级铀矿化发生故障与大规模碳酸盐内的故障相交(1-10米厚)窄(1-10米厚)均匀的,光晶的高度无氯砂裂片。这种矿物化切除在布卷曲的外壳内的DFZ上的倾向,并表明了一种令人满意的流体源,其在与区域区状岩性接触时沉淀铀。由于LMS内的钻井密度有限,与UMS相比,MoreComplex对矿化和约束的重塑物量的重新分析体积,Inthe LMS资源的最高置信类别在当前资源模型中是“指出”。铀的主要管制分辨率矿物质园允许了解R3D的可能几何形状。反过来,这允许增加信任

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号