【24h】

Effect of GTAW and EBW on Titanium Alloy - Ti6Al4V

机译:GTAW和EBW对钛合金的影响 - Ti6Al4V

获取原文

摘要

Titanium and its alloy present in a range of high specific strength materials with good fatigue and corrosion resistance. The density of Titanium is half of that of Steel. Titanium exists in two allotropic phases i.e. α-phase and β- phase. The HCP structured a is stable up to 882°C and transforms to BCC - β thereafter. Elements like Aluminium, Oxygen, Nitrogen, and Carbon stabilizes α phase whereas β stabilizers are Molybdenum, Vanadium, and Hydrogen. By properly alloying the above stabilizing elements, α - β alloys also can be made. Ti 6Al 4V is such a type of α - β alloy with stabilized α and β phase at room temperature. It contains 6% Aluminium as a stabilizer 4% Vanadium as β stabilizer. The welding technology of Titanium is complicated due to the fact that appreciable contamination by Oxygen, Nitrogen and Hydrogen can occur above 650°C causing severe embrittlement and at its melting point; the metal rapidly dissolves these gases and Carbon. Therefore welding of Titanium alloys are invariably done either in vacuum or in inert atmosphere. Due to these reasons, the suitable welding techniques for Titanium Alloys are limited. While doing GTAW of Titanium, Argon must be supplied to every heated surface as shielding, purging and trailing gas in the case of open air welding or by operating in totally enclosed argon filled welding cabinet. The weld edge preparation, pre-weld cleaning/pickling, welding speed, current, voltage, gas flow rate, etc are to be controlled very closely to achieve a defect free weld in GTAW. In the case of EBW, the welding is carried out in a chamber maintained at a high vacuum level of 10-4 torr. or better. Due to this, absolutely contamination free sound weld can be produced. Faster rate of welding, deep penetration characteristics, precise heat control, lower energy input to the weld etc are some of the salient features of EBW. However perfect joint fit up, pre-weld cleaning, proper joint design, beam alignment, vacuum level; adequate fixtures etc are some of the pre-requisites in EBW for a good weld. Due to introduction of welds, mechanical properties vary and microstructure changes. Welds can also alter the Fracture and Fatigue properties. Also weld repairs can cause significant changes in the strength and properties. Taking Titanium alloys for aerospace application, studying about the variation of these properties on the weld is of utmost importance. The variation of the above aspects with respect to various welding techniques is also different. This paper brings out an effective comparison on the weldabilty, mechanical properties and microstructural properties of this alloy with specific reference to the two important welding processes - EBW and GATW.
机译:钛及其合金存在于一系列高比强度材料,具有良好的疲劳和耐腐蚀性。钛的密度为钢的一半。钛存在于两个同种异体相中。α相和β-阶段。 HCP结构A稳定高达882℃,然后转变为BCC - β。铝,氧,氮和碳等元素稳定α相,而β稳定剂是钼,钒和氢。通过适当地合金化上述稳定元件,也可以制造α - β合金。 Ti 6Al 4V是在室温下具有稳定α和β相的这种类型的α - β合金。它含有6%的铝作为稳定剂4%钒作为β稳定剂。由于氧气,氮气和氢气的明显污染,氮气和氢气以上,钛和氢气造成严重脆化和熔点,钛的焊接技术是复杂的。金属迅速溶解这些气体和碳。因此,钛合金的焊接总是在真空或惰性气氛中完成。由于这些原因,用于钛合金的合适焊接技术是有限的。在进行钛的GTAW时,必须在露天焊接或通过在完全封闭的氩气填充焊接柜中操作屏蔽,吹扫和尾部气体时,必须将氩气供应到每个加热的表面。焊接边缘制备,预焊接清洁/酸洗,焊接速度,电流,电压,气体流量等应非常接近地控制GTAW的缺陷焊缝。在EBW的情况下,焊接在保持在10-4托的高真空水平的腔室中进行。或更好。由于这一点,可以生产绝对污染的自由声焊接。更快的焊接速率,深度渗透特性,精确的热控制,焊缝的较低能量等是EBW的一些突出特征。无论完美的关节贴合,焊接清洗,适当的关节设计,光束对准,真空水平;足够的灯具等是EBW中的一些预先要求,用于良好的焊接。由于焊接引入,机械性能变化和微观结构变化。焊缝还可以改变骨折和疲劳性能。焊接修理也会导致强度和性能的显着变化。服用航空航天应用的钛合金,研究焊缝上这些性能的变化是至关重要的。关于各种焊接技术的上述方面的变化也不同。本文提出了这种合金的焊接,机械性能和微观结构性能的有效比较,具体参考了两个重要的焊接工艺 - EBW和GATW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号