首页> 外文会议>International Conference on Global Trends in Joining, Cutting and Surfacing Technology >A Reliability Engineering Framework for Evaluating Creep Limited Welded Structures in Power and Process Plants
【24h】

A Reliability Engineering Framework for Evaluating Creep Limited Welded Structures in Power and Process Plants

机译:一种可靠性工程框架,用于评估电源和过程工厂中的蠕变有限焊接结构的可靠性工程框架

获取原文

摘要

The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Creep is a viscoelastic property exhibited by all materials under sustained loading at an elevated temperature. The primary variables affecting the creep process are the values of the principal stresses as well as the operational component temperature. The kinetics of the creep process is controlled by the topological dynamics of the various defects structures existing in the material. The overall creep deformation process is approximately determined by a linear sum of the deformation rates associated with all the defect structures. Voiding at grain boundaries and inter-phase interfaces starts early in the creep process. Eventually, the nucleated voids grow link up, and form micro-cracks. The growth of the micro-cracks results in the emergence of extensive macro cracking in the material leading to eventual failure. Fabrication of high temperature power & process plant components in volves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe & continual operation of the welded plant components. Unfortunately, a typical weldment in an engineering structure is a zone of complex micro structural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting.
机译:稳态蠕变响应以及材料的总蠕变寿命分别通过指数和逆指数关系分别与运行部件温度有关。蠕变是在升高温度下持续加载的所有材料展出的粘弹性。影响蠕变过程的主要变量是主应力的值以及操作部件温度。蠕变过程的动力学由存在于材料中存在的各种缺陷结构的拓扑动态来控制。总蠕变变形过程大致由与所有缺陷结构相关联的变形速率的线性和确定。在晶粒边界和相互相位界面处的空缺在蠕变过程中开始。最终,核心的空隙生长链,形成微裂纹。微裂纹的生长导致材料中的广泛宏观裂缝导致最终失败。在伏尔斯中的高温动力和过程工厂组件的制造广泛使用焊接作为制造过程。当然,必须认真地解决与焊接蠕变寿命相关的问题,以便安全和持续运转焊接厂部件。遗憾的是,工程结构中的典型焊接是复杂的微结构灰度区域,包括许多不同的子区域,具有不同的中间级和微尺度形态的阶段和(均匀)化学及其蠕变寿命预测呈现相当大的挑战。本文提出了一种随机算法,可用于开发用于焊接结构的实验蠕变空化强度与剩余寿命相关性。除了平均场意义上的剩余寿命的估计之外,该模型可用于预测植物部件在严格的概率范围内的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号