首页> 外文会议>International Symposium on Advances in Computational Heat Transfer >MODELLING OF GASOLINE SPRAY IMPACT AGAINST HOT SURFACES AND TRANSIENT HEAT TRANSFER EFFECTS ON PHASE TRANSITION
【24h】

MODELLING OF GASOLINE SPRAY IMPACT AGAINST HOT SURFACES AND TRANSIENT HEAT TRANSFER EFFECTS ON PHASE TRANSITION

机译:汽油喷雾冲击对热表面的建模和瞬态传热效应

获取原文

摘要

In gasoline direct injection (GDI) engines, the dynamics of the gasoline spray and the possible spray-wall interaction are key factors affecting the equivalence ratio distribution of the air-fuel mixture at spark timing, hence the development of combustion and the emission of pollutants at the exhaust. Gasoline droplets impact may lead to rebound with consequent secondary atomization, or to the deposition in the liquid phase over walls as wallfilm. This last slowly evaporates with respect to free droplets, leading to local enrichment of the mixture, hence to routs towards increased unburned hydrocarbons and particulate matter emissions. Especially in the so-called wall-guided mixture formation mode, complex phenomena characterise mixture formation, namely a turbulent multi-phase system where heat transfer involves a gaseous phase (made of air and gasoline vapour), the liquid phase (droplets not yet evaporated and wallfilm) and the solid wall. Therefore, a proper numerical prediction based on a 3D CFD modelling of in-cylinder phenomena necessarily derives from the correct simulation of the wall cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation and of the conductive heat transfer within the solid. Indeed, the heat transfer mechanism influences the dynamics of the spray impinging over the heated wall, with a consequent direct effect on the mixing interaction between gasoline and air. A proper sub-model is here specifically implemented to reproduce a basic experiment relevant to a simple configuration within a confined vessel, where a multi-hole spray for GDI applications is directed toward a heated wall. The sub-model solves the strongly coupled heat and mass transfer problem and allows achieving a correct description of the liquid and vapour phases dynamics after impact. The validation of the developed 3D CFD model is performed on the ground of the collected experimental measurements deriving from a combined use of the schlieren and the Mie scattering optical techniques.
机译:在汽油直喷(GDI)发动机中,汽油喷雾的动态和可能的喷射壁相互作用是影响火花正时气燃料混合物的等效比分布的关键因素,因此燃烧和排放的污染物的发射在排气。汽油液滴撞击可能导致随后的二次雾化反弹,或者在壁上沉积在壁上作为壁膜的沉积。最后一次缓慢地蒸发到自由液滴,导致混合物的局部富集,从而促进不燃烧的碳氢化合物和颗粒物质排放。特别是在所谓的壁引导混合物形成模式中,复杂的现象表征混合形成,即湍流多相系统,其中传热涉及气相(空气和汽油蒸气),液相(液滴尚未蒸发)和壁留下)和坚固的墙壁。因此,基于缸内现象的3D CFD建模的适当数值预测必须源于壁冷却效果的正确模拟,这是由于次级蒸发所需的汽油所需的蒸发和导电热传递所需的汽油蒸发热量的减法在固体内。实际上,传热机制影响冲击在加热壁上的喷雾的动力学,随后对汽油和空气之间的混合相互作用的直接影响。这里具体地实施了一个适当的子模型以再现与限制容器内的简单配置相关的基本实验,其中用于GDI应用的多孔喷雾朝向加热壁。子模型解决了强烈耦合的热量和传质问题,并允许在冲击后实现液体和蒸汽阶段动态的正确描述。基于所收集的实验测量的地面进行了显影的3D CFD模型的验证,这些测量从组合使用Schlieren和MIE散射光学技术的结合使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号