首页> 外文期刊>Cryogenics >Implementation of the superfluid helium phase transition using finite element modeling: Simulation of transient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets
【24h】

Implementation of the superfluid helium phase transition using finite element modeling: Simulation of transient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

机译:使用有限元建模实现超流体氦相变:超导磁体冷却通道中瞬态传热和He-I / He-II相前运动的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductiv ity of helium below the lambda transition temperature significantly helps to extract heat from the coil windings during steady state and transient heat deposition. The layout and size of the helium channels have a strong effect on the maximum amount of heat that can be extracted from the porously insulated superconducting cables. To better understand the behavior of superfluid helium penetrating the magnet structure and coil windings, simulation based on a three dimensional finite element model can give valu able insight. The 3D geometries of interest can be regarded as a complex network of coupled 1D geom etries. The governing physics is thus similar for both geometries and therefore validation of several and different 1D models is performed. Numerically obtained results and published experimental data are compared. Once the viability of the applied methods is proven, they can be incorporated into the 3D geometries. Not only the transport properties in the bulk of the helium are of interest, but also the strong non-linear behavior at the interfaces between solids and superfluid helium (Kapitza conductance) is important from an engineering point of view, since relatively large temperature jumps may occur here. In this work it is shown how He-II behavior in magnet windings can be simulated using COMSOL Mul-tiphysics. 1D models are validated by experimental results taken from literature in order to improve existing 2D and 3D models with more complete physics. The examples discussed include transient heat transfer in 1D channels, Kapitza conductance and sub-cooling of normal liquid helium to temperatures below the lambda transition in long channels (phase front movement).
机译:在高磁场超导加速器磁体的热设计中,重点是使用超流氦作为冷却剂和稳定介质。低于λ转变温度时,氦气的非常高的有效导热率显着有助于在稳态和瞬态热沉积过程中从线圈绕组吸收热量。氦气通道的布局和大小对可从多孔绝缘超导电缆吸收的最大热量有很大影响。为了更好地了解氦渗透磁体结构和线圈绕组的超流体特性,基于三维有限元模型的仿真可以提供有价值的见解。感兴趣的3D几何可被视为耦合1D几何的复杂网络。因此,对于两种几何形状,控制物理都是相似的,因此将执行几个不同的一维模型的验证。比较数值获得的结果和公开的实验数据。一旦证明了所应用方法的可行性,就可以将其合并到3D几何中。从工程学的角度来看,不仅关注大量氦的传输特性,而且从固体的角度来看,固体与超流氦之间的界面处的强非线性行为(Kapitza电导)也很重要,因为可能会有较大的温度跃变发生在这里。在这项工作中,显示了如何使用COMSOL Multiphysics来模拟磁体绕组中的He-II行为。一维模型通过从文献中获得的实验结果进行了验证,以改善现有的2D和3D模型的物理性。讨论的示例包括一维通道中的瞬态传热,Kapitza电导率和正常液氦过冷至长通道中Lambda转变以下的温度(相前移)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号