首页> 外文会议>Conference on laser material processing for solar energy >Modeling of Contact Geometry and Dopant Profile during Laser - Silicon Interaction
【24h】

Modeling of Contact Geometry and Dopant Profile during Laser - Silicon Interaction

机译:激光 - 硅相互作用期间接触几何和掺杂剂谱的建模

获取原文

摘要

Laser fired contacts (LFCs) and laser doped selective emitters can be used to improve manufacturing throughput of photovoltaic devices without sacrificing device conversion efficiency. However, the laser parameters used to form these features can vary significantly. LFCs can be formed with short pulses (hundreds of nanoseconds) while selective emitters can be formed using either a pulsed or CW mode. Here, mathematical models for a pulsed laser and CW laser are used to evaluate how variations in processing parameters affects alloy formation, molten pool geometry and dopant concentration profiles. The models solve the conservation equations for mass, energy, and momentum to study the effects of heat and mass transfer and fluid flow on the formation of LFCs and emitters. Comparisons between experimental data and theoretical calculations for molten pool geometry and concentration profiles demonstrate good agreement. For LFCs, when assuming complete melting and mixing of the Al contact layer, the Al concentration varies significantly with power level, which drastically impacts the calculated pool shape. The dimensionless Peclet number is used to understand dominant heat and mass transfer mechanisms. Conduction is the dominant heat transfer mechanism at power levels around 20W for both LFCs and emitters. As the power level is increased to 50W, however, the dominant heat transfer mechanism changes to convection. Changes in laser parameters also impact fluid flow velocities and dopant concentration profile for emitters processed in CW mode, which suggests that convection-based models should be used to accurately predict concentration profiles within emitters.
机译:激光触点(LFC)和激光掺杂的选择性发射器可用于改善光伏器件的制造产量,而不会牺牲装置转换效率。然而,用于形成这些特征的激光参数可以显着变化。 LFC可以用短脉冲(数百纳秒)形成,而可以使用脉冲或CW模式形成选择性发射器。这里,用于脉冲激光和CW激光的数学模型用于评估处理参数的变化如何影响合金形成,熔融池几何形状和掺杂剂浓度谱。该模型解决了质量,能量和势头的保护方程,以研究热量和传质的影响和流体流动对LFC和发射器的形成。熔池几何和浓度型材的实验数据与理论计算的比较表现出良好的一致性。对于LFCS,当假设Al接触层的完全熔化和混合时,Al浓度随功率水平而变化显着变化,这彻底影响了计算的池形状。无量纲的Peclet号码用于了解主导热量和传质机制。导通是用于LFC和发射器的功率水平的主导传热机制。然而,由于功率水平增加到50W,所以主导的传热机制变为对流。激光参数的变化也会影响CW模式中加工的发射器的流体流速和掺杂剂浓度曲线,这表明基于对流的模型应该用于精确地预测发射器内的集中谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号