首页> 外文会议>International Congress of Precision Machining >Reactive Atom Plasma for Rapid Figure Correction of Optical Surfaces
【24h】

Reactive Atom Plasma for Rapid Figure Correction of Optical Surfaces

机译:无功原子等离子体,用于光学表面的快速图校正

获取原文

摘要

Nanometre-scale figuring technique at atmospheric pressure for large optical surfaces is a high profile research topic which attracts numerous competing state-of-the-art technologies. In this context, a dry chemical process, called Reactive Atom Plasma (RAP), was developed as a prospectively ideal alternative to CNC polishing or Ion Beam Figuring. The RAP process combines high material removal rates, nanometre level repeatability and absence of subsurface damage. A RAP figuring facility with metre-scale processing capability, Helios 1200, was then established in the Precision Engineering Centre at Cranfield University. The work presented in this paper is carried out using Helios 1200 and demonstrates the rapid figuring capability of the RAP process. First experimental tests of figure correction are performed on fused silica substrates over 100 mm diameter areas. A 500 nm deep spherical hollow shape is etched onto the central region of 200x200 mm polished surfaces. The test is carried out twice for reproducibility purposes. After two iterative steps, a residual figure error of-16 nm rms is achieved. Subsequently, the process is scaled up to 140 mm diameter areas and two tests are carried out. First, the developed algorithm for 500 nm deep spherical hollow test is confirmed. Residual deviation over processed area is -18 nm rms after three iterations. Finally, a surface characterised by random topography (79 nm rms initial figure error) is smoothed down to ~ 16 nm rms within three iteration steps. All results presented in this paper are achieved by means of an in-house developed tool-path algorithm. This can be described as a staggered meander-type tool motion path specifically designed to reduce heat transfer and consequently temperature gradient on the surface. Contiguously, classical de-convolution methods are adapted to non-linear etching rates for the derivation of the surface scanning speed maps. The figuring procedure is carried out iteratively. It is noteworthy that iteration steps never exceed -7 minutes mean processing time.
机译:大型光学表面大气压下的纳米级图案技术是一种高轮廓研究主题,吸引了众多竞争最先进的技术。在这种情况下,被称为反应原子等离子体(RAP)的干化学过程作为CNC抛光或离子束图的前瞻性替代。 RAP工艺结合了高材料去除率,纳米水平重复性和缺乏地下损伤。然后在Cranfield大学的精密工程中心建立了具有仪表级处理能力的RAP实验性,Helios 1200。本文提出的工作是使用Helios 1200进行的,并展示了说明过程的快速图。在熔融二氧化硅基板上进行图校正的第一实验试验,直径超过100mm的区域。将500nm深的球形中空形状蚀刻到200×200mm抛光表面的中心区域上。测试进行两次以进行再现性目的。在两个迭代步骤之后,实现了-16nm rms的残余图形误差。随后,该过程可缩放到直径为140mm的区域,并且执行两个测试。首先,确认了500nm深球形空心测试的发达算法。三次迭代后,处理区域的残余偏差为-18纳米rms。最后,在三个迭代步骤中,通过随机地形(79nm rms初始数字误差)以随机地形的表面(79nm rms初始数字误差)平滑至约16nm rms。本文提出的所有结果都是通过内部开发的工具路径算法实现的。这可以描述为特定设计以减少传热和表面上的温度梯度的交错曲折型刀具运动路径。连续地,经典的去卷积方法适用于用于表面扫描速度图的推导的非线性蚀刻速率。迭代地执行图变量过程。值得注意的是,迭代步骤永远不会超过-7分钟的平均处理时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号