首页> 外文会议>AAS Kyle T. Alfriend astrodynamics symposium >GENERALIZED FREQUENCY DOMAIN STATE-SPACE MODELS FOR ANALYZING FLEXIBLE ROTATING SPACECRAFT
【24h】

GENERALIZED FREQUENCY DOMAIN STATE-SPACE MODELS FOR ANALYZING FLEXIBLE ROTATING SPACECRAFT

机译:用于分析柔性旋转航天器的广义频域状态空间模型

获取原文

摘要

The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series for the deformational coordinate that transforms the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The Laplace domain equation of motion is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton’s principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for the original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition–based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.
机译:通过耦合的刚性和柔性的身体自由度来描述旋转围绕单轴旋转的柔性航天器的数学模型,其中运动方程由积分部分微分方程建模。光束状结构通常用于分析柔软的柔性阑尾。通过向变形坐标引入将控制方程转换为常微分方程系统的变形坐标来分析运动方程。虽然技术上是简单的,但这种方法出现了两个问题:(1)模型是频率截断的,因为在模型中保留了有限数量的序列项,并且需要(2)计算强烈的矩阵值传递函数计算所需的计算系统的频域行为。这两个问题都是解决的:(1)计算管理积分局部微分方程的Laplace变换; (2)引入广义状态空间(由变形坐标和三个空间部分衍生物组成,以及变形坐标的单个和双空间积分)。 LAPPAlt域的运动方程以线性状态空间微分方程的形式铸造,其根据矩阵指数和卷积积分而解决。汉密尔顿原则定义的结构边界条件在封闭式解决方案上强制执行普遍存在的状态空间。然后操纵广义状态空间模型以提供原始积分部分差分系统动态的分析标量传递函数模型。符号方法用于获得基于矩阵指数/卷积积分算法的闭合eIGEN分解的解决方案。提出了数值结果,其比较基于经典系列的方法与计算代表性航天器传输函数模型的广义状态空间方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号