【24h】

SOLVATION DYNAMICS USING ULTRAFAST X-RAY ABSORPTION SPECTROSCOPY

机译:使用超快X射线吸收光谱的溶剂化动力学

获取原文

摘要

Solvation dynamics aims to incorporate the active role of the solvent in chemical and biochemical reactions and its relevance stems from the fact that most of chemistry and biology takes place in liquids. A full description of the electronic and molecular changes associated with these reactions includes time-resolved structural information, which can be obtained using transient X-ray absorption spectroscopy. Carrying out optical pump and X-ray probe experiments using a synchrotron X-ray source involves the drawback that time resolution is limited by the shortest achievable particle bunch length and therefore lies in the picosecond time domain. However, it can be considerably improved applying the slicing scheme where a femtosecond laser pulse is co-propagated with an electron bunch such that the energy of the electrons within the spatially overlapping region will be modulated due to their interaction with the laser field. Suitable X-ray optics subsequently allows for the extraction of femtosecond X-ray pulses but on the other hand roughly the same factor gained in X-ray pulse duration is lost in flux, which increases the integration time significantly. A feasibility study for a particular system should include a realistic estimation of the expected integration time. This can be done by calculating the signal to noise ratio S/AS in dependence of the total number of necessary X-ray photons which in turn can be related to the integration time. Neglecting any pump-pulse-induced solvent or counter-ion excitation the transient signal can be written in a simple form and its noise can be estimated applying error propagation on S(I~p; l~(unp)) where the errors on the pumped and unpumped intensity values can be determined in the shot-noise limit. The sample specific influence on the integration time shows up in the fraction of molecules that can be excited during the pump process.
机译:溶剂化动力学旨在纳入化学和生化反应中溶剂的积极作用,其相关性源于大多数化学和生物学发生在液体中的事实。与这些反应相关的电子和分子变化的完整描述包括可以使用瞬时X射线吸收光谱获得的时间分辨的结构信息。使用同步X射线源进行光学泵和X射线探测实验涉及时间分辨率受到最短可实现的粒子束长度的限制,因此位于皮秒时域中的缺点。然而,可以显着改善应用切片方案,其中飞秒激光脉冲与电子束共传播,使得由于它们与激光场的交互,将被调制空间重叠区域内的电子的能量。合适的X射线光学器件随后允许提取飞秒X射线脉冲,但另一方面,在X射线脉冲持续时间中的磁通量大致相同的因子在磁通量中丢失,这显着增加了积分时间。对特定系统的可行性研究应包括对预期集成时间的现实估计。这可以通过计算信噪比S /如又可以与整合时间相关的必要X射线光子的总数来完成。忽略任何泵浦脉冲诱导的溶剂或反离子激发,瞬态信号可以以简单的形式写入,并且可以估计其噪声在s上的误差传播(i〜p; l〜(UNP)),其中误差可以在射击噪声限制中确定泵送和未捕获的强度值。对整合时间的特定影响在泵过程中可以激发的分子部分中显示出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号