首页> 外文会议>Annual Conference and Experimental and Applied Mechanics >Photonic Doppler Velocimetry Measurements of Materials Under Dynamic Compression
【24h】

Photonic Doppler Velocimetry Measurements of Materials Under Dynamic Compression

机译:电动压缩下材料的光子多普勒速度测量

获取原文

摘要

Photonic Doppler velocimetry (PDV), also known as heterodyne velocimetry [1], is a compact displacement interferometer system that is rapidly becoming a standard diagnostic in dynamic compression research. A PDV system is essentially a fiber-based Michelson interferometer, utilizing recent advances in near-infrared (λ_0 = 1550 nm) detector technology and fast digitizers to record beat frequencies in the gigahertz range. Compared to the traditional shock wave diagnostic VISAR [2], some advantages of PDV include simple assembly and operation, readily available components, and the lack of an intrinsic delay time. In PDV measurements, Doppler shifted light from a moving target is combined with unshifted light, creating a beat frequency that is proportional to the target velocity (f = 2v/λ_0). For a target moving at 1 km/s, a measured PDV signal would have a beat frequency of 1.29 GHz. The frequency content of the PDV signal is typically calculated using a sliding short-time Fourier transform (STFT). Within each signal segment of time duration τ, the beat frequency is extracted from the peak of the power spectrum where the velocity resolution is defined by how well the frequency peak can be resolved. In a typical (standard) PDV configuration, a single laser light source is used to illuminate a target and provide an unshifted reference light for interference with the target light (see Fig. 1a). When the target is stationary, no beating within the PDV signal occurs since the reflected light from the target also remains unshifted. The relationship between the time duration τ and characteristic peak width Δf follows the uncertainly product: (Δf) τ > (4π)~(-1). For example, to achieve a velocity precision Δv = 10 m/s, the minimum time duration needed in the STFT analysis is τ = 6 ns. For measured velocities that are reasonably large (> 1 km/s), the relative velocity precision (Δv/v < 1%) is sufficient to investigate many dynamic material properties. However, low velocity (< 100 m/s) transients can be difficult to resolve with standard PDV since the beat period of the feature of interest may be longer than the time duration of the analysis. Also, in order to improve the poor relative velocity precision (Δv/v ~10%), τ must be increased thus sacrificing time precision.
机译:光子多普勒速度(PDV),也称为外差速度测量仪[1],是一种紧凑的位移干涉仪系统,可快速成为动态压缩研究中的标准诊断。 PDV系统基本上是一种基于纤维的迈克森干涉仪,利用近红外(λ_0= 1550nm)探测器技术和快速数字化器的最近进步,以在Gigahertz范围内记录拍摄频率。与传统的冲击波诊断visaR [2]相比,PDV的一些优点包括简单的组装和操作,容易获得的组件,以及缺乏内在延迟时间。在PDV测量中,来自移动目标的多普勒移位与未频闪的光相结合,产生与目标速度(F = 2V /λ_0成比例的节拍频率。对于以1公里/秒移动的目标,测量的PDV信号将具有1.29 GHz的拍频率。 PDV信号的频率内容通常使用滑动短时傅里叶变换(STFT)计算。在每个信号段的持续时间τ内,从功率谱的峰值提取拍频,其中速度分辨率通过频率峰值可以解决的程度。在典型的(标准)PDV配置中,单个激光光源用于照亮目标并提供用于干扰目标光的未频闪的参考光(参见图1A)。当目标静止时,由于来自目标的反射光也保持不频繁,因此不会发生在PDV信号内的跳动。持续时间τ和特征峰宽度Δf之间的关系遵循不确定产品:(Δf)τ>(4π)〜(-1)。例如,为了实现速度精度ΔV= 10m / s,STFT分析所需的最小时间持续时间是τ= 6ns。对于合理大(> 1km / s)的测量速度,相对速度精度(ΔV/ v <1%)足以研究许多动态材料。然而,由于感兴趣的特征的节拍周期可能比分析的持续时间长,因此难以用标准PDV解析低速(<100m / s)瞬变。而且,为了提高相对速度精度(ΔV/ V〜10%),必须增加τ,从而牺牲时间精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号