首页> 外文会议>International Conference on Modern Trends in Physics Research >Photo-excitation and Photoionization for Plasma Opacities under the Iron Project
【24h】

Photo-excitation and Photoionization for Plasma Opacities under the Iron Project

机译:铁项目下等离子透明度的光励磁和光相

获取原文
获取外文期刊封面目录资料

摘要

Opacity gives a measure of radiation transport in a medium such that higher or lower opacity indicates more or less attenuation of radiation. As the radiation propagates, opacity is caused by the absorption and emission of radiation by the constituent elements in the medium, such as astrophysical plasmas. It is also affected by photon scatterings. Hence opacity depends mainly on the intrinsic atomic processes, photo-excitation in a bound-bound transition, photoionization in a bound-free transition, and photon-electron scattering. Monochromatic opacity at a particular frequency, k(v),is obtained mainly from oscillator strengths (f) and photoionization cross sections (σ_(pr)). However, the total monochromatic opacity is obtained from summed contributions of all possible transitions from all ionization stages of all elements in the source. Calculation of accurate parameters for such a large number of transitions has been the main problem for obtaining accurate opacities. The overal mean opacity, such as Rosseland mean opacity (k_R),depends also on the physical conditions, such as temperature and density, elemental abundances and equation of state such as local thermodynaic equilibrium (LTE) of the plasmas. For plasmas under HED (high energy density) conditions, fluid dynamics may be considered for shock waves such as in a supernova explosion. In this report, I will exemplify the necessity for high precision atomic calculations for the radiative processes of photoexcitation and photoionization in order to resolve some perplexing astrophysical problems relevant to elemental abundances and hence opacities. In particular I will present results on oscillator strengths of Fe XVIII and photoionization cross sections of Fe XVII which are abundant in high temperature plasmas, such as solar corona, and photoionization and recombination of O II which is abundant in low temperature plasmas, such as in a planetary nebula. Sophisticated atomic calculations under the Iron Project are revealing important and dominant features not included in the current opacities. Opacities with these new results are expected to resolve the longstanding problems on abundances in the sun, orion nebula etc.
机译:不透明度给出了介质中的辐射传输的量度,使得更高或更低的不透明度表明辐射或多或少衰减。随着辐射传播,不透明度是由培养基中的组成元素的吸收和排放引起的,例如天体物理等离子体。它也受到光子散射的影响。因此,不透明度主要取决于内在原子过程,在绑定结合的转变中的光激发,在无束的转变中的光离子,以及光子 - 电子散射。特定频率的单色不透明度K(V),主要来自振荡器强度(F)和光离子截面(Σ_(PR))。然而,总单色不透明度是从源中所有元素的所有电离阶段的所有可能转变的总和贡献获得。计算这种大量转换的准确参数已经是获得准确的不透明度的主要问题。 rosseland意味着不透明度(K_R)等多种平均不透明度也取决于物理条件,例如温度和密度,元素丰度和等离子体的局部热实体平衡(LTE)的状态。对于铰接下的等离子体(高能量密度)条件,可以考虑流体动力学,用于诸如超新型爆炸中的冲击波。在本报告中,我将举例说明光透镜和光离子化的辐射过程的高精度原子计算的必要性,以解决与元素丰富和因此不透明有关的一些令人困惑的天体物理问题。特别地,我将呈现Fe XVIII和Fe XVII的Fe XVIII和PhotoIonization横截面的结果,该Fe XVII在高温等离子体中丰富,例如在低温等离子体中丰富的Solar Corona和II II的光离心和重组,例如一个行星星云。铁项目下的复杂原子计算揭示了当前不透明度中不包含的重要和主导功能。预计这些新结果的不透明度将解决太阳,猎户座星云等丰富的长期存在的问题

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号