首页> 外文会议>International Conference on Mechanical Engineering >Mixed Convection Analysis in Lid-driven Cavity with Sinusoidally Curved Bottom Wall Using CNT-Water Nanofluid
【24h】

Mixed Convection Analysis in Lid-driven Cavity with Sinusoidally Curved Bottom Wall Using CNT-Water Nanofluid

机译:用CNT水纳米流体用正弦弯曲底壁的盖子驱动腔混合对流分析

获取原文

摘要

Mixed convection in a lid-driven enclosure with a curved bottom wall has been investigated using CNT (Carbon Nanotube)-water nanofluid in this paper. The curvature of the bottom wall follows the sine function. Studies have been made with different amplitudes (λ = 0.05, 0.1, 0.15) of the sine function hence wall curvature. The curved wall at the bottom is heated and the top wall is kept at a relatively low temperature. Left vertical and right vertical surface are assumed to be adiabatic. Top wall has been moving at a constant lid velocity U_0 at right direction. Galerkin method of FEA (Finite Element Analysis) has been used to solve the governing equations. Different parameters like Richardson number (Ri = 0.1 ~ 10) at a fixed Reynolds number (Re = 100), solid volume fraction of CNT particle (Φ = 0 ~ 0.09) are used to observe better heat transfer rate. Streamlines, isothermal lines and average Nusselt number plots are included to discuss the result of the investigation. A 2D plot between average Nusselt number and solid volume fraction of CNT-water nanofluid is also given to analyse heat transfer rate. It is observed that higher value of Richardson number shows better heat transfer rate. Finally, the paper concludes that better heat transfer is achieved at higher amplitude (λ = 0.15) of curved surface at higher solid volume fraction (Φ = 0.09).
机译:在本文中使用CNT(碳纳米管)-WALL纳米流体研究了盖子底壁的盖子底壁的混合对流。底壁的曲率遵循正弦功能。已经采用不同幅度(λ= 0.05,0.1,0.15)的正弦函数的研究,因此壁曲率。底部的弯曲壁被加热,顶壁保持在相对低的温度。假设左垂直和右垂直表面是绝热的。顶壁一直在右方向上以恒定的盖子速度U_0移动。 FEA的Galerkin方法(有限元分析)已被用于解决控制方程。在固定雷诺数(RE = 100)中的Richardson数(RI = 0.1〜10)等不同的参数,CNT颗粒的固体体积分数(φ= 0〜0.09)用于观察更好的传热速率。简化,等温线和平均纽带数图是讨论调查的结果。还给出了CNT水纳米流体的平均露珠数和固体体积分数之间的2D曲线图分析了传热速率。观察到,Richardson号的较高值显示出更好的传热速率。最后,本文得出结论,在较高的固体体积分数(φ= 0.09)下在弯曲表面的较高幅度(λ= 0.15)处实现更好的传热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号