首页> 外文会议>International Symposium Honoring French Mathematical Physicist >Advances in the Thermodynamics of Ideal Gasesby Means of Computer Simulations
【24h】

Advances in the Thermodynamics of Ideal Gasesby Means of Computer Simulations

机译:计算机仿真理想气体手段的热力学研究进展

获取原文

摘要

Irreversible thermodynamic processes in ideal gases are investigated by computer simulations of the compound piston. A hard-sphere model of the gas on either side of a compound piston shows that damping occurs naturally without invoking extraneous mechanisms such as friction. Inter-particle collisions are identified as being responsible, as these redistribute the particle energies by altering all the components of momentum. In collisions with the piston, on the other hand, only the component of particle momentum in the direction of the piston motion is affected. Thus inter-particle collisions effectively dissipate the energy of the piston. These ideas are then incorporated into a simpler, one dimensional model based on kinetic theory in which all the particles have the same initial energy and inter-particle colisions are simulated by randomly adjusting the energy distribution. Varying the rate of energy redistribution alters the rate of decay of the piston motion. In addition, this simple model allows thermal interactions with the walls of the vessel to be simulated easily, and we observe a second mechanism of damping due to delayed heating and cooling. These ideas lead directly to a macroscopic formulation of thermodynamics in terms of rate equations. The models give an insight into the micro-dynamical origins of irreversibility in ideal gases and allow the thermodynamics of these irreversible processes to be investigated. We find surprisingly simple relationships between the volume changes and characteristic pressures in the system. Finally, we apply these idea s to the Carrot cycle and show that a dynamic cycle is executed if the piston is allowed to move under altemately ideal isothermal and adiabatic conditions. In this dynamic Camot cycle not only is work done but power is developed through the motion of the piston. The implications for classical thermodynamics are discussed briefly.
机译:通过化合物活塞的计算机模拟研究了理想气体中的不可逆热力学过程。复合活塞两侧的气体的硬球模型表明,阻尼发生在不调用诸如摩擦的外来机构的情况下。颗粒间碰撞被识别为负责任,因为这些通过改变动量的所有组分重新分配粒子能量。另一方面,在与活塞与活塞的碰撞中,仅受到活塞运动方向上的粒子动量的组分。因此,颗粒间碰撞有效地耗散活塞的能量。然后将这些思想纳入了一种简单的一维模型,其基于动力学理论,其中所有颗粒具有相同的初始能量和粒子间区间通过随机调节能量分布来模拟。改变能量再分配的速率改变活塞运动的衰减率。另外,这种简单的模型允许容易地模拟容器的壁的热交互,并且我们观察由于延迟加热和冷却引起的第二种阻尼机构。这些想法在速率方程方面直接导致热力学的宏观制剂。该模型深入了解理想气体中不可逆性的微动作起源,并允许研究这些不可逆过程的热力学。我们发现系统中的体积变化和特征压力之间的令人惊讶的简单关系。最后,我们将这些想法S应用于胡萝卜循环,并表明如果允许活塞在完全理想的等温和绝热条件下移动动态周期。在这种动态凸轮周期中不仅是工作的工作,而且通过活塞的运动开发了电力。简要讨论对经典热力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号