首页> 外文会议>Symposium O on Multifunctional Nanoparticle Systems - Coupled Behavior and Applications >Surface spin-glass freezing and blocking in nickel ferrite nanoparticles
【24h】

Surface spin-glass freezing and blocking in nickel ferrite nanoparticles

机译:镍铁氧体纳米粒子的表面旋转玻璃冷冻和阻塞

获取原文

摘要

We prepared single-phase nickel ferrite nanoparticles separated by silicon dioxide using sol-gel method with tetraethyl orthosilicate (TEOS) as a precursor for SiO_2. The magnetic properties are investigated by using SQUID-magnetometry over a broad temperature range (4.2 - 350 K), magnetic field (2 - 70,000 Oe) and frequency (0.1 - 1000 Hz) range. The particle size is in the range 8 - 12 nm. Exchange bias and spin disorder appear at the core-shell interface due to broken bonds on the surface. Disorder and core-shell interaction induces spin-glass freezing which is manifested by a low temperature peak in the AC susceptibility well separated from magnetic blocking peak. This low temperature peak is assigned to spin-glass freezing. The proof of spin-glass freezing is managed by zero field cooled/field cooled (ZFC/FC), frequency and DC field dependence of AC susceptibility, low temperature hysteresis loop and time dependent thermoremanent magnetization at different temperatures. All the measurements stated above signify blocking/unblocking at higher temperatures and surface spin-glass freezing at low temperatures. The aim of our work is to contribute to a better understanding of "spin-frozen" magnetic ferrite nanoparticles at diameters 8 - 12 nm which could be important in future for stabilizing the magnetic state of "core-shell"-structured nanomagnets.
机译:我们使用用四乙基硅酸盐(TEOS)为SiO_2的前体用二氧化硅法制备通过二氧化硅分离的单相镍铁氧体纳米颗粒。通过在宽温度范围(4.2-350K),磁场(2 - 70,000 OE)和频率(0.1-1-10Hz)范围内使用鱿鱼磁测度来研究磁性。粒度在8-12nm的范围内。由于表面上破碎的粘合,核心壳界面出现了交换偏见和旋转紊乱。紊乱和核心壳相互作用诱导旋转玻璃冻结,其在与磁阻峰间分离的AC磁性易感性良好的低温峰值中表现出的。该低温峰被分配给旋转玻璃冻结。旋转玻璃冻结的证据由零场冷却/场冷却(ZFC / FC),频率和直流场依赖性的AC敏感度,低温滞后回路和时间依赖性温度磁化在不同温度下。上面规定的所有测量标明在较高温度和表面旋转玻璃下凝固/解锁在低温下冻结。我们的作品的目的是有助于更好地理解直径8-12nm的“旋转冷冻”磁铁氧体纳米颗粒,这对于稳定“核心壳”结构的纳米磁镜稳定磁状态可能是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号