首页> 外文会议>Symposium on physical, electroanalytical, and bioanalytical electrochemistry >Electrochemical Quartz Crystal Microbalance Technique in Sonoelectrochemistry
【24h】

Electrochemical Quartz Crystal Microbalance Technique in Sonoelectrochemistry

机译:超声电化学中的电化学石英晶体微稳态技术

获取原文

摘要

Ultrasound has been increasingly applied in chemistry and electrochemistry in the past decades (1-4). The major effects of ultrasound in a liquid medium are cavitation associated with microstreaming and acoustic streaming (1, 4-12). Cavitation is the formation of bubbles in the liquid during the rarefaction cycle of the ultrasonic wave. Bubbles can grow over several periods and finally collapse in an adiabatic manner (so-called transient cavitation) (6, 13, 14). The collapse leads locally to very high temperatures and pressures ("hot spot"), high heating and cooling rates, and shock waves in the surrounding liquid (4, 5, 7,12,13, 15-18). Due to the extreme conditions hydroxyl and hydrogen radicals are formed (18-20). In the proximity of a surface, cavitation causes strong microstreaming either by replacement of the volume taken up by the bubble by liquid (21) or by the formation of a strong microjet during bubble collapse (8,13,17, 22-24). Acoustic streaming is convection induced in the liquid in the direction of the traveling wave by momentum transfer (24-26). The effects of ultrasound on electrochemistry are caused by surface cavitation leading to cleaning and activation of the electrode surface, possibly a local temperature increase, and to the extreme improvement in mass transport by acoustic streaming and microstreaming that surpasses conventional stirring methods and the rotating disc electrode by far (1-3, 24-30). This can cause a change from mass transport to charge transfer control, influence nucleation and growth processes, and alter selectivities if alternate electrode reactions are possible (1-3,24-30).
机译:在过去的几十年中,超声波越来越多地应用于化学和电化学中(1-4)。超声波在液体介质中的主要效果是与微晶和声学流相关的空化(1,4-12)。空化是超声波稀疏循环期间液体中的气泡的形成。气泡可以在几个时期生长,最后以绝热方式(所谓的瞬态空化)(6,13,14)崩溃。折叠在本地温度和压力(“热点”),高加热和冷却速率,以及周围液体(4,5,7,12,13,15-18)中的冲击波。由于极端条件,形成羟基和氢自由基(18-20)。在表面的接近度下,通过液体(21)或通过在泡泡塌陷期间的泡沫(8,13,17,22-24)期间形成强微目鼠的体积,空化通过替换泡沫的体积来引起强微晶。声流通过动量转移(24-26)在行进波的方向上诱导在液体中的对流。超声波对电化学的影响是由表面空化引起的,导致电极表面的清洁和激活,可能是局部温度增加,并通过声流和微晶的质量传输的极大改善,超越常规搅拌方法和旋转盘电极到目前为止(1-3,24-30)。这可能导致质量传输到电荷转移控制的变化,影响成核和生长过程,并且如果可以替代电极反应,则会改变选择性(1-3,24-30)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号