首页> 外文会议>IMAPS international conference and exhibition on device packaging >Optimal Thermal Management of Microelectronic Packages
【24h】

Optimal Thermal Management of Microelectronic Packages

机译:微电子包装的最佳热管理

获取原文

摘要

The increasing trend in power levels and associated densities leads to the need of design thermal optimization, at module and at system (module-board stack-up) levels. The microelectronics industry is facing multiple challenges to promote smaller, faster and cost-effective packages, coping with potential thermal bottlenecks. The present study investigates packages, whose thermal and electrical performances are superior to the classic (standard) packages. A 3-D conjugate numerical study was conducted to evaluate the thermal performance of Gallium Arsenic (GaAs) die packaged in Quad Flat No Lead (QFN) packages for various wireless and networking applications. Two different QFN packages are investigated: a standard package and a Power package (PQFN) with thicker leadframe and solder die attach. The thermal impact of die attach material, leadframe thickness, die pad size, and board structure is evaluated and provides valuable information for product designers. Two powering scenarios are investigated: 1) one for standard operating parameters and 2) an alternative for extreme operating powering scenarios. Results indicate that the peak temperature reached on the die for 3x3 mm QFN under normal powering conditions is ~138.5°C (or 119°C/W junction-to-air thermal resistance), while for the extreme scenario, the junction temperature is ~186°C (or 125°C/W junction-to-air thermal resistance). The top Au metal layer has limited impact on lateral heat spreading. Under extreme powering conditions, the PQFN package reaches a peak temperature of ~126°C (66°C/W thermal resistance). A ~32% reduction in peak temperature is achieved with the 5x5 PQFN package. The improvement is mainly due to the larger package size, high conductivity die attach material, thicker leadframe and more board thermal vias. A parametric study shows that the increase in leadframe thickness from 0.2 mm (8 mils) to 0.5 mm (20 mils) in the QFN package leads to only 3% reduction in peak temperature. By comparison, the die attach material (conductive epoxy vs. solder) has significant impact on overall reduction in peak temperature (~12%). Experimental measurements using Infrared (IR) Microscope are performed to validate the numerical results.
机译:功率水平和相关密度的越来越长的趋势导致设计热优化,模块和系统(模块板堆叠)水平的需要。微电子工业正面临多种挑战,促进更小,更快,更具成本效益的封装,应对潜在的热瓶颈。本研究调查包装,其热和电气性能优于经典(标准)包装。进行了三维共轭数值研究,以评估砷(GaAs)模具的热性能,用于各种无线和网络应用的四扁平没有引线(QFN)封装中包装。调查了两个不同的QFN套餐:具有较厚的引线框架和焊接模具附着的标准封装和动力封装(PQFN)。评估模具附着材料,引线框架厚度,模具焊盘尺寸和板结构的热冲击,并为产品设计人员提供了有价值的信息。调查了两个电源方案:1)标准操作参数和2)一个替代的极端操作电源方案。结果表明,在正常供电条件下为3x3 mm QFN达到的峰值温度为约138.5°C(或119°C / W连接到空气热阻),而对于极端情况,结温是〜 186°C(或125°C / W连接到空气热阻)。顶部Au金属层对横向散热的影响有限。在极端通电条件下,PQFN封装达到达126°C(66°C / W热阻)的峰值温度。用5×5PQFN封装实现峰值温度的〜32%。改进主要是由于封装尺寸较大,高电导率模具安装材料,较厚的引线框架和更多的电动机热通孔。参数研究表明,在QFN封装中的0.2mm(8密耳)至0.5mm(20密耳)的引线框架厚度的增加导致峰值温度降低仅3%。相比之下,模具附着材料(导电环氧树脂与焊料)对峰值温度的总体减少(〜12%)具有显着影响。使用红外(IR)显微镜进行实验测量以验证数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号