首页> 外文会议>European Conference Exhibition on Integration Issues of Miniaturized Systems >Smart Energy Management and Low-Power Design of Embedded Systems on Algorithmic Level for Self-Powered Sensorial Materials and Robotics
【24h】

Smart Energy Management and Low-Power Design of Embedded Systems on Algorithmic Level for Self-Powered Sensorial Materials and Robotics

机译:嵌入式系统的智能能量管理和算法水平嵌入式系统的低功耗设计,用于自动感应材料和机器人

获取原文

摘要

Today there is an increasing demand for miniaturized smart sensors embedded in sensorial materials and smart actuators in microsystem applications. Each sensor and actuator node provides some kind of sensor, electronics, data processing, and communication. With increasing miniaturization and sensor-actuator density, decentralized network and data processing architectures are preferred, but energy supply is still centralized. Using local energy-harvesting technologies a decentralized energy supply can be provided, too. Energy harvesting, for example using thermo- electrical sources, actually delivers only low electrical power, requiring 1. smart energy management on the consumer side controlling the energy consumption and 2. low-power design. We propose and demonstrate a design methodology for embedded systems satisfying low power requirements suitable for self-powered sensor and actuator nodes. This design methodology focuses on 1. smart energy management at runtime and 2. application-specific System-On-Chip (SoC) design at design time contributing to low-power systems on both algorithmic and technological level. Smart energy management is performed spatially at runtime by a behaviour-based or state-action-driven selection from a set of different (implemented) algorithms classified by their demand of computation power, and temporally by varying data processing rates. It can be shown that power/energy consumption of an application specific SoC design depends strongly on computation complexity. For example a PID controller used for feedback position control of an actuator requires basically only the P-part, the I- and D-parts only increase position accuracy and response dynamic which are selectable. Depending on the actual state of the system, and the actual and estimated future energy deposit, suitable algorithms can be selected and executed optimizing the Quality-of-Service (QoS) and the trade-off between accuracy and economy. Signal and control processing is modelled on abstract level using signal flow diagrams (Matlab & Simulink toolbox [2]). These signal flow graphs are mapped to Petri Nets to enable direct high-level synthesis of digital SoC circuits using a multi-process architecture with the Communicating-Sequential-Process model on execution level and the High-Level synthesis framework ConPro [1]. Power analysis using simulation techniques on gate-level is obtained from the Silicium Compiler and Analyzer SiCA providing input for the algorithmic selection during runtime of the system leading to a closed-loop design flow. Additionally, the signal-flow approach enables power management by varying the signal flow rate which will be discussed later.
机译:今天,对微型智能传感器的需求越来越大,在微系统应用中嵌入了感觉材料和智能执行器中的小型化智能传感器。每个传感器和执行器节点提供某种传感器,电子设备,数据处理和通信。随着小型化和传感器致动器密度的增加,优选分散的网络和数据处理架构,但能源供应仍然集中。使用局部能量收集技术也可以提供分散的能源供应。例如,使用热源源实际上仅提供低电功率,需要1.控制能耗和2.低功耗设计的消费者侧的智能能量管理。我们提出并展示了满足适用于自动传感器和致动器节点的低功耗要求的嵌入式系统的设计方法。这种设计方法侧重于1.运行时的智能能源管理和2.在算法和技术水平上有助于低功耗系统的设计时间在智能系统上进行智能能源管理。通过由其计算功率的需求的一组不同(实现的)算法的基于行为的或状态动作驱动的选择在空间上进行空间地执行智能能量管理,并且通过改变数据处理速率,在时间上逐步地进行分类的不同(实现的)算法。可以表明,应用特定的SOC设计的功率/能量消耗在计算复杂性上强烈取决于。例如,用于反馈致动器的反馈位置控制的PID控制器基本上只需要P部分,I和D部分仅提高可选择的位置精度和响应动态。根据系统的实际状态,以及实际和估计的未来能量存款,可以选择合适的算法,并执行优化服务质量(QoS)和准确性和经济之间的权衡。信号和控制处理采用信号流程图(MATLAB和SIMULINK TOOLBOX [2])在抽象级别上建模。这些信号流图映射到Petri网,以使用多过程架构在执行级别和高级合成框架Conpro [1]上使用多过程架构实现数字SOC电路的直接高电平合成。从栅极级别的仿真技术的功率分析是从偶极编译器和分析器SICS获得的,为系统的运行时间内提供算法选择的输入,导致闭环设计流程。另外,信号流法通过改变稍后将讨论的信号流量来实现电源管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号