首页> 外文会议>SPIE Conference on Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications >Multiphoton luminescence of gold nanorods upon excitation withwavelengths away from their absorption maxima
【24h】

Multiphoton luminescence of gold nanorods upon excitation withwavelengths away from their absorption maxima

机译:金纳米棒对远离吸收最大值的激发波长的多光子发光

获取原文

摘要

Gold nanoparticles are quite popular as contrast agents for optical microscopy. Their strong linear and nonlinear interaction with light, coupled with their biocompatibility and resistance to photobleaching make them suitable contrasts agents for bioimaging applications. Gold nanorods have been used for in vivo two photon microscopy in small animals [PNAS 102, 15752 (2005)]. Conventional two photon microscopy with gold nanorods involves exciting these particles with femtosecond laser at wavelengths close to their longitudinal plasmon resonance (LPR). Most of the reported works used Ti:Sapphire laser with excitation wavelengths ranging from 780 nm to 850 nm. The rational was to maximize absorption of excitation wavelengths, a fraction of which gives rise to two photon luminescence. This however causes intense heating of the nanorods and unless the excitation powers are kept low, gold nanorods tend to melt [Phys Rev Lett 95, 267405 (2005)]. Another less explored way of getting multiphoton emission from gold nanorods is to excite them at long wavelengths far away from their LPR wavelength [Jour Amer Chem Soc 131, 14186 (2009)]. We are interested in femtosecond lasers operating around 1200 nm wavelengths because of their lower scattering and absorption by tissue and water. Here we compare multiphoton photon luminescence properties of gold nanorods when excited at wavelengths around 800 nm and 1200 nm. Excitation with wavelengths around 1200 nm has certain advantages like lower heating of the particles and hence prolonged durations of imaging. Other advantage is the ability to collect emission in the near infrared regions (NIR) up to 800 nm which is not possible when using excitation wavelengths around 800 nm. These features are good for deep tissue imaging. One disadvantage of this approach is lower luminescence intensity
机译:金纳米粒子与光学显微镜的造影剂相当流行。它们与光的强线性和非线性相互作用,与它们的生物相容性和抗光博的抗性相结合,使它们适用于生物分析应用的对比剂。金纳米棒已用于小型动物的两个光子显微镜中[PNAS 102,15752(2005)]。常规的两种光子显微镜与金纳米棒涉及将这些颗粒与飞秒激光器锁定在纵向等离子体共振(LPR)接近的波长。据报道的大部分作品使用Ti:蓝宝石激光,激发波长范围为780nm至850nm。理性是最大化激发波长的吸收,这一部分产生两个光子发光。然而,这导致纳米棒的强烈加热,除非励磁功率保持低电平,否则金纳米棒倾向于熔化[物理Rev Lett 95,267405(2005)]。从黄金纳米棒获得多光子发射的另一种较少的探索方式是在远离其LPR波长的长波长下激发它们[Jour Amer Chem SoC 131,14186(2009)]。我们对飞秒激光器感兴趣,因为它们较低的散射和纸巾和水吸收,因此受到了大约1200nm的波长。在这里,我们在波长为800nm和1200nm的波长激发时比较金纳米棒的多光子光子发光性质。波长约1200nm的激发具有较低的颗粒加热等优点,因此延长的成像持续时间。其他优点是能够在近红外区域(NIR)中收集最多800nm的发射,当使用约800nm的激发波长时是不可能的。这些特征对于深组织成像有益。这种方法的一个缺点是较低的发光强度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号