首页> 外文会议>International Symposium on Atomic Cluster Collisions >Studying Phase Transition in Nanocarbon Structures
【24h】

Studying Phase Transition in Nanocarbon Structures

机译:在纳米碳结构中的阶段过渡

获取原文

摘要

We investigate phase transitions in C_(60) and present a novel theoretical approach for the description of its fragmentation and formation. This theoretical approach consists of a statistical mechanics model combined with a topologically-constrained forcefield which was developed to describe the formation and fragmentation of C_(60) within a specific C_(60) ? 30C_2 channel. Based on this forcefield, we conduct molecular dynamics simulations where we demonstrate that at the phase transition temperature, both the cage and gaseous phases were found to coexist and the system continuously oscillates between the two phases, i.e. the fullerene repeats its fragmentation and reassembly within a single molecular dynamics trajectory. Combining the results of the molecular dynamics simulations and the statistical mechanics approach, we obtain a phase transition temperature of 3800-4200 K at pressures of 10-100 kPa, in good correspondence with carbon-arc discharge experiments. Furthermore, we also conduct molecular dynamics simulations using the Tersoff potential to investigate the effect of lifting the C_(60) ? 30C_2 constraint on the phase transition of C_(60). Finally, we investigate phase transitions for the following systems consisting of 240 carbon atoms: fullerene, buckybowl, nanocarbon, graphene and carbon onion. We demonstrate that the C_(240) fullerene is the most stable of the 5 phases, while the uncapped (10,10) nanotube is the least stable. We also show that the carbon onion, nanotube and buckybowl all transform into a fullerene-like structure before total decomposition. In particular, the C_(60) of the C_(60)@C_(180) carbon onion fully fragments and its 60 atoms are incorporated into the C_(180) shell to form a C_(240) fullerene, while both the nanotube and buckybowl evaporate a few C atoms before forming a cage-like structure.
机译:我们调查C_(60)中的相变,并提出了一种新的理论方法,用于描述其破碎和形成。该理论方法包括统计力学模型与拓扑限制的力域结合,该模型被开发为描述特定C_(60)内C_(60)的形成和碎片化? 30C_2通道。基于该力域,我们进行分子动力学模拟,我们证明在相转变温度下,发现笼和气态相连共存,系统在两个阶段之间连续振荡,即富勒烯重复其破碎和重新组装。单分子动力学轨迹。结合分子动力学模拟的结果和统计力学方法,我们在10-100kPa的压力下获得3800-4200k的相变温度,与碳 - 电弧放电实验良好。此外,我们还使用纺织部门进行分子动力学模拟,以研究提升C_(60)的效果? 30C_2 C_(60)的相位转换的约束。最后,我们研究了由240个碳原子组成的以下系统的相转变:富勒烯,巴氏纤维,纳米碳,石墨烯和碳洋葱。我们证明C_(240)富勒烯是5个阶段中最稳定的,而未处理(10,10)纳米管是最不稳定的。我们还表明,在总分解之前,碳洋葱,纳米管和BuckyBowl均转化成富勒烯状结构。特别地,C_(60)的C_(60)α(180)碳洋葱完全片段及其60原子掺入C_(180)壳中以形成C_(240)富勒烯,而纳米管和BuckyBowl在形成笼状结构之前蒸发几个C原子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号