首页> 外文会议>SPIE Optics Photonics Conference on Plasmonics: Nanoimaging, Nanofabrication, and their Applications >Quantitative amplification of surface enhanced Raman scattering through plasmonic coupling in controlled nanoparticle assemblies
【24h】

Quantitative amplification of surface enhanced Raman scattering through plasmonic coupling in controlled nanoparticle assemblies

机译:通过控制纳米粒子组件中等离子体耦合的表面增强拉曼散射的定量扩增

获取原文

摘要

Metal nanoparticle assemblies of well-defined structure are investigated as substrates for quantitative surface enhanced Raman scattering (SERS). The ~100 nm structures are formed from oligonucleotide-functionalized gold core and satellite particles. Raman scattering from Cy5 incorporated on the core particles is detected before and after formation of the coupled plasmonic structures. The amplification of Raman scattering observed upon formation of the coupled structures matches quantitatively the increase in the fourth power of the surface E-field associated with coupling between particles. Raman scattering per core-satellite structure is determined by calibrating measured intensities using methanol as an intensity standard. The number of molecules that contribute significantly to the Raman signal and the mean cross section per adsorbed molecule is determined by analysis of the spatial non-uniformity of the core surface field distribution. Comparison of the wavelength dependence of the near field and the scattering spectrum using simulation reveals that the wavelengths of the maxima in near and far fields are more closely aligned for the coupled structures than for isolated cores.
机译:研究了明确定义的结构的金属纳米粒子组件作为用于定量表面增强的拉曼散射(SERS)的基板。 〜100nm结构由寡核苷酸官能化的金芯和卫星颗粒形成。在形成耦合等离子体结构之前和之后,检测来自核心颗粒上的Cy5的拉曼散射。在形成耦合结构时观察到的拉曼散射的放大定量地匹配与粒子之间的耦合相关的表面E场的第四功率的增加。通过使用甲醇作为强度标准校准测量的强度来确定每个芯卫星结构的拉曼散射。通过分析芯表面场分布的空间不均匀性来确定对每种吸附分子的平均横截面有贡献的分子数。使用模拟的近场和散射光谱的波长依赖性的比较揭示了近距离场中最大的波长比耦合结构比对于隔离的核心更紧密地对准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号