首页> 外文会议>SAE International Powertrains, Fuels and Lubricants Meeting >Large-Eddy Simulation on the Effects of Fuel Injection Pressure on the Gasoline Spray Characteristics
【24h】

Large-Eddy Simulation on the Effects of Fuel Injection Pressure on the Gasoline Spray Characteristics

机译:燃油喷射压力对汽油喷雾特性影响的大涡模拟

获取原文

摘要

Increasing the injection pressure in gasoline direct injection engines has a substantial potential to reduce emissions while maintaining a high efficiency in spark ignition engines. Present gasoline injectors are operating in the range of 20 MPa to 25 MPa. Now there is an interest in higher fuel injection pressures, for instance, around 40 MPa, 60 MPa and even higher pressures, because of its potential for further emission reduction and fuel efficiency improvements. In order to fully utilize the high-pressure fuel injection technology, a fundamental understanding of gasoline spray characteristics is vital to gain insight into spray behavior under such high injection pressures. The understanding achieved may also be beneficial to improve further model development and facilitate the integration of such advanced injection systems into future gasoline engines. In the present study, a gasoline fuel spray has been investigated over a range of fuel injection pressures from 40 to 150 MPa through a numerical simulation study. The numerical calculations have been performed in a constant volume chamber under non-vaporizing conditions to best match the experimental setup. The numerical model utilized a large-eddy simulation (LES) approach for the gas flow and a standard Lagrangian spray model for the liquid phase. The spray atomization has been modeled using the Kelvin Helmholtz - Rayleigh Taylor (KH-RT) atomization model with a droplet size distribution from the injector assumed to follow a Rosin-Rammler distribution function. Simulation results for the spray liquid penetration length are validated with experimental findings under different fuel injection pressures. Afterwards, an arithmetic mean droplet diameter (D10) and a Sauter mean droplet diameter (D32) as a function of pressure are compared against the measured droplet diameters. Simulated drop size distributions are presented and compared with measured droplet sizes. The results indicate that a high fuel injection pressure increases the liquid penetration length and significantly reduces droplet sizes. The results also exhibit that the SMD decreases from 13.4 μm to 7.5 μm, when injection pressure changes from 40 MPa to 150 MPa and that probability of finding the 5-9 μm droplet diameter decreases from 72% to 40% for the injection pressure drops from 150 MPa to 40 MPa.
机译:增加汽油直喷发动机中的注射压力具有显着的潜力,以减少排放,同时保持火花点火发动机的高效率。本发明的汽油喷射器在20MPa至25MPa的范围内。现在,由于其进一步减排和燃料效率改善,因此对较高的燃料喷射压力有较高的燃料喷射压力,例如约40MPa,60MPa甚至更高的压力。为了充分利用高压燃料喷射技术,对汽油喷雾特性的根本理解是在这种高注射压力下深入了解喷雾行为至关重要的。实现的理解也可能有利于改善进一步的模型开发,并促进这种先进的注射系统整合到未来的汽油发动机中。在本研究中,通过数值模拟研究在一系列燃料喷射压力范围内研究了汽油燃料喷雾。在不蒸发的条件下在恒定体积室中进行了数值计算,以最佳匹配实验设置。数值模型利用了用于气流的大涡流模拟(LES)方法和液相标准拉格朗日喷雾模型。喷射雾化已经使用Kelvin Helmholtz - Rayleigh Taylor(KH-RT)雾化模型进行了建模,具有从喷射器的液滴尺寸分布,假设遵循松香垃圾箱分布函数。在不同燃料喷射压力下,用实验结果验证了喷雾液体穿透长度的仿真结果。然后,将算术平均液滴直径(D10)和燃烧器平均液滴直径(D32)与测量的液滴直径进行比较。呈现并与测量的液滴尺寸进行了模拟滴尺寸分布。结果表明,高燃料喷射压力增加了液体穿透长度并显着降低了液滴尺寸。结果还表明,当注射压力从40MPa变为150MPa时,SMD从13.4μm降低至7.5μm,并且发现5-9μm液滴直径的概率从注射压力下降的72%至40%从72%降低到40% 150 MPA到40 MPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号