首页> 外文会议>ASME International Manufacturing Science and Engineering Conference >HOOK SHAPED RESIDUAL STRESS: THE EFFECT OF TOOL PLOUGHING AND THE ANALYSIS OF THE MECHANICAL AND THERMAL EFFECTS
【24h】

HOOK SHAPED RESIDUAL STRESS: THE EFFECT OF TOOL PLOUGHING AND THE ANALYSIS OF THE MECHANICAL AND THERMAL EFFECTS

机译:钩形残余应力:工具耕作的效果和机械热效应分析

获取原文
获取外文期刊封面目录资料

摘要

To investigate the unique hook-shaped residual stress profile generated from hard turning process, an improved orthogonal (2-D) Finite Element (FE) model is established to include the ploughing effect of cutting edge. The model is further decomposed into two FE sub-models (sub-model 1 and sub-model 2) to determine the thermal and mechanical effects on the residual stress profiles by saw-tooth chip formation process and honed-edge ploughing process respectively. The two FE sub-models are sequentially adopted to evaluate the compression effect induced by chip formation process and ploughing effect resulted from honed-edge cutting tool on residual stress profile. Their separated and integrated effects on residual stress hook-shape profile are addressed by comparing the predicted residual stresses by sub-model 1, sub-model 2, the two sub-models' superposition, and the whole improved FE model. The results show that chip formation effect on residual stress profile happens earlier than the ploughing effect. Chip formation effect provides a foundation for the finalized residual stress profile by determining the maximum depth and magnitude of the compressive residual stress. Ploughing process generates much more thermal load to produce the tensile residual stress in hard turned surface and sequentially drives the final resultant residual stress into an obvious hook-shaped by modifying the previous compressive residual stress profile. The location with the maximum compressive residual stress is identified as the critical position to separate the mechanical load and thermal load generated from ploughing effect. The decomposition methodology on mechanical and thermal effects is proposed and thoroughly discussed in the paper.
机译:为了研究从硬转弯过程产生的独特的钩形残余应力曲线,建立了改进的正交(2-D)有限元(FE)模型以包括切削刃的耕作效果。该模型进一步分解成两个FE子模型(子模型1和子模型2),以分别通过SAW-TOOT芯片形成过程和珩磨边缘犁流程对残留应力分布的热和机械效应。依次采用两个Fe子模型来评估芯片形成过程和犁流效应引起的压缩效果,从珩磨边缘切削工具对残余应力分布产生。通过将预测的残余应力与子模型1,子模型2,两个子模型'叠加和整个改进的FE模型进行比较来解决它们对残余应力钩形轮廓的分离和综合效果。结果表明,芯片形成效应比耕作效应更早发生。通过确定压缩残余应力的最大深度和大小,芯片形成效果为最终残留应力分布提供了基础。犁流程产生更多的热负荷以产生硬转向表面的拉伸残余应力,并通过改变先前的压缩残余应力分布,顺序地将最终所得残余应力变为明显的钩形。具有最大压缩残余应力的位置被识别为分离从耕作产生的机械载荷和热负荷的临界位置。在纸上提出并彻底讨论了机械和热效应的分解方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号