首页> 外文会议>ASME international manufacturing science and engineering conference >HOOK SHAPED RESIDUAL STRESS: THE EFFECT OF TOOL PLOUGHING AND THE ANALYSIS OF THE MECHANICAL AND THERMAL EFFECTS
【24h】

HOOK SHAPED RESIDUAL STRESS: THE EFFECT OF TOOL PLOUGHING AND THE ANALYSIS OF THE MECHANICAL AND THERMAL EFFECTS

机译:钩形残余应力:工具犁削的作用以及力学和热效应的分析

获取原文

摘要

To investigate the unique hook-shaped residual stress profile generated from hard turning process, an improved orthogonal (2-D) Finite Element (FE) model is established to include the ploughing effect of cutting edge. The model is further decomposed into two FE sub-models (sub-model 1 and sub-model 2) to determine the thermal and mechanical effects on the residual stress profiles by saw-tooth chip formation process and honed-edge ploughing process respectively. The two FE sub-models are sequentially adopted to evaluate the compression effect induced by chip formation process and ploughing effect resulted from honed-edge cutting tool on residual stress profile. Their separated and integrated effects on residual stress hook-shape profile are addressed by comparing the predicted residual stresses by sub-model 1, sub-model 2, the two sub-models' superposition, and the whole improved FE model. The results show that chip formation effect on residual stress profile happens earlier than the ploughing effect. Chip formation effect provides a foundation for the finalized residual stress profile by determining the maximum depth and magnitude of the compressive residual stress. Ploughing process generates much more thermal load to produce the tensile residual stress in hard turned surface and sequentially drives the final resultant residual stress into an obvious hook-shaped by modifying the previous compressive residual stress profile. The location with the maximum compressive residual stress is identified as the critical position to separate the mechanical load and thermal load generated from ploughing effect. The decomposition methodology on mechanical and thermal effects is proposed and thoroughly discussed in the paper.
机译:为了研究硬车削过程中产生的独特的钩形残余应力轮廓,建立了一种改进的正交(2-D)有限元(FE)模型,该模型包括切削刃的耕作效果。将该模型进一步分解为两个有限元子模型(子模型1和子模型2),分别通过锯齿切屑形成过程和珩磨犁边过程确定对残余应力分布的热效应和机械效应。依次采用两个有限元子模型来评估切屑形成过程所引起的压缩效果以及珩磨刃刀具对残余应力分布的犁ing效果。通过比较子模型1,子模型2,两个子模型的叠加以及整个改进的有限元模型的预测残余应力,解决了它们对残余应力钩形轮廓的分离和综合影响。结果表明,切屑形成对残余应力分布的影响比犁耕作用更早发生。切屑形成效应通过确定压缩残余应力的最大深度和大小,为最终残余应力轮廓提供了基础。耕作过程会产生更多的热负荷,从而在硬车削表面产生拉伸残余应力,并通过修改先前的压缩残余应力曲线将最终的残余残余应力顺序驱动为明显的钩形。具有最大压缩残余应力的位置被标识为将犁耕效果产生的机械载荷和热载荷分开的临界位置。提出了关于机械和热效应的分解方法,并在本文中进行了详尽的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号