首页> 外文会议>Institute of Navigation International Technical Meeting >Climatology of High and Low Latitude Scintillation in the Last Solar Cycle by Means of the Geodetic Detrending Technique
【24h】

Climatology of High and Low Latitude Scintillation in the Last Solar Cycle by Means of the Geodetic Detrending Technique

机译:通过大地测量方法,最后的太阳循环中高和低纬度闪烁的气候学

获取原文
获取外文期刊封面目录资料

摘要

Signals from a Global Navigation Satellite System (GNSS) can be disturbed along the propagation ray path from the satellites to the receivers. The presence of irregularities in the electron density in the near-Earth space environment can cause refraction and/or diffraction in the electromagnetic signals used by GNSS. This causes fast fluctuations of the GNSS signals known as scintillation. Currently, specialized Ionospheric Scintillation Monitoring Receivers (ISMRs) are used to characterize the intensity (or amplitude) and the phase scintillation. ISMRS are capable of sampling GNSS carrier-phase measurements at high-rate (e.g. 50 to 100 Hz) and must be equipped with a highly stable clock. In contrast, the present contribution studies the climatology of scintillation at high- and low- latitudes for both hemispheres and for a long temporal series, with measurements gathered by conventional geodetic receivers with a sampling frequency of 1 Hz that belong to the International GNSS Service (IGS) network. The derivation of S4 (amplitude scintillation) and σ_Φ (phase scintillation) parameters uses a novel technique based in a precise Geodetic Detrending (GD) of the carrier-phase measurements, as in Precise Point Positioning (PPP). Amplitude and phase scintillation have been statistically characterized by means of the cumulative distribution functions (CDF) of S4 and σΦ parameters. The thresholds for moderate and intense scintillation periods are established from the 99% and 99.9% percentiles of the CDFs as 0.25 and 0.45 for σΦ values and 0.3 and 0.5 for S4 values, respectively. The large temporal series analyzed allows relating high-activity periods to severe space weather events such as geomagnetic storms at high-latitudes, to local times from 19h to midnight at low-latitudes and studying the seasonal dependencies. We conclude that the GD method is a powerful tool to perform scintillation studies and that it can be applied to individual (i.e. uncombined) signal frequencies.
机译:来自全局导航卫星系统(GNSS)的信号可以沿着从卫星到接收器的传播射线路径被扰乱。近地上空间环境中的电子密度的不规则性可能导致GNSS使用的电磁信号中的折射和/或衍射。这导致称为闪烁的GNSS信号的快速波动。目前,专用电离层闪烁监测接收器(ISMRS)用于表征强度(或幅度)和相位闪烁。 ISMR能够以高速(例如50至100Hz)采样GNSS载波相位测量,并且必须配备高度稳定的时钟。相比之下,本贡献研究了半球和低纬度的闪烁的气候学和长时间系列,通过传统的大地测量器聚集的测量,其中包含属于国际GNSS服务的1 Hz的采样频率( IGS)网络。 S4(幅度闪烁)和Σ_φ(相位闪烁)参数的推导使用基于载波相位测量的精确的大地测量贬值(GD)的新颖技术,如精确点定位(PPP)。通过S4和Σφ参数的累积分布函数(CDF),幅度和相位闪烁已经统计表征。适度和强烈的闪烁周期的阈值分别从CDF的99%和99.9%的CDF百分比的0.25和0.45的σ值和0.3和0.5的S4值建立。分析的大型时间序列允许将高活动期与高纬度地质风暴(如高纬度)的严重空间发生,从19h到午夜以低纬度地区,研究季节性依赖性。我们得出结论,GD方法是执行闪烁研究的强大工具,并且它可以应用于个体(即未键入的)信号频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号