首页> 外文会议>World Haptics Conference >Inverse piano technique for studying finger interaction during pressing tasks
【24h】

Inverse piano technique for studying finger interaction during pressing tasks

机译:逆钢琴技术在压制任务期间研究手指交互

获取原文

摘要

When a person moves or presses with an individual finger other fingers also produce a force (Kilbreath and Gandevia 1994; Li et al. 2004; Zatsiorsky et al. 2000). Several factors are known to contribute to this response: (1) peripheral mechanical coupling, (2) multi-digit motor units, and (3) diverging central commands. This phenomenon, known as enslaving, has traditionally been studied in isometric pressing tasks. The purpose of this project was to build a device, an Inverse Piano (IP), to study finger interaction in non-isometric pressing tasks. The IP allows for fingers to be unexpectedly raised or lowered during pressing tasks. Fingers are perturbed by linear motors located directly under uni-dimensional force sensors, which serve as the “piano keys”. Motors are triggered using National Instruments LabVIEW. This allows key position and finger force data to be recorded simultaneously. The IP makes possible the studying of several factors on the finger force outcome and coordination. In particular, the following factors can be explored: (a) Finger combination. There are 15 combinations of the key manipulation: four 1-finger tasks (I, M, R, L, where the letters designate the index, middle, ring, and little finger respectively); six 2-finger tasks (IM, IR, IL, MR, ML, RL); four 3-finger tasks (IMR, IML, IRL, MRL) and one 4-finger task (IMRL). (b) Predictability of the key raising. The options are innumerable but can be roughly classified into three groups: (1) both the sequence and time intervals are unknown to the subjects; (2) the sequence is known but the time intervals are unknown; and (3) both the sequence and time intervals are known in advance. (c) Amplitude of key movement. The IP is capable of displacing fingers up to 2 cm, in increments less than 1 mm. (d) The speed of key movement. The IP can vary key movement rates of between 2 mm/s to 4,687 mm/s. (e) Resistance of the keys to the external force. The resistance can mimic different mechani--cal properties, e.g. elastic reistance which is proportional to the key displacement, damping resistance proportional to the speed, dry friction, etc. The magnitude of the resistance, e.g. ‘stiffness’, can also be varied. (f) Feedback with various options: (1) visual feedback on the computer screen, the subject can also see his/her hand; (2) no visual feedback on the screen, however the subject can see his/her hand; and (3) no feedback on the screen, the subject cannot see his/her hand. Thus far experimentation using IP has only investigated effects of varying magnitude of displacement.
机译:当一个人移动或用手指压制另一个手指时,其他手指也产生了一种力量(基准和甘维亚1994; Li等人,2004; Zatsiorsky等,2000)。已知几个因素有助于这种响应:(1)外围机械耦合,(2)多位电机单元,和(3)发散中央命令。这种现象称为Enslaving,传统上已经在等距压制任务中进行了研究。该项目的目的是建立一个设备,逆钢琴(IP),以研究非等距按压任务中的手指交互。 IP允许在按任务期间出乎意料地提高或降低手指。手指由直接位于单维力传感器的线性电机扰动,其用作“钢琴键”。电机使用National Instruments LabVIEW触发。这允许同时记录键位置和手指力数据。该知识产权使得在手指力量结果和协调方面可以研究几个因素。特别是,可以探索以下因素:(a)手指组合。关键操作有15个组合:四个手指任务(I,M,R,L,其中字母分别指定指数,中,环和小指);六个手指任务(IM,IR,IL,MR,ML,RL);四个3手指任务(IMR,IML,IRL,MRL)和一个4手指任务(IMRL)。 (b)重点提高的可预测性。选项是无数的,但可以大致分为三组:(1)序列和时间间隔都不知道受试者; (2)序列是已知的,但时间间隔未知; (3)序列和时间间隔都是预先已知的。 (c)关键运动的幅度。 IP能够以小于1mm的增量置换为2厘米的手指。 (d)关键运动的速度。 IP可以改变2 mm / s至4,687 mm / s之间的关键移动速率。 (e)钥匙对外力的抵抗力。电阻可以模拟不同的机械性质,例如,弹性重度与关键位移成比例,阻尼阻力与速度,干摩擦等比例成比例。电阻的大小,例如, '僵硬',也可以改变。 (f)通过各种选项的反馈:(1)电脑屏幕上的视觉反馈,主题也可以看到他/她的手; (2)在屏幕上没有视觉反馈,但受试者可以看到他/她的手; (3)没有反馈在屏幕上,受试者看不到他/她的手。因此,使用IP的远远实验仅研究了不同程度的位移的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号