首页> 外文会议>Haptics Conference,WHC, 2009 World >Inverse piano technique for studying finger interaction during pressing tasks
【24h】

Inverse piano technique for studying finger interaction during pressing tasks

机译:逆向钢琴技术,用于研究按压任务期间的手指互动

获取原文

摘要

When a person moves or presses with an individual finger other fingers also produce a force (Kilbreath and Gandevia 1994; Li et al. 2004; Zatsiorsky et al. 2000). Several factors are known to contribute to this response: (1) peripheral mechanical coupling, (2) multi-digit motor units, and (3) diverging central commands. This phenomenon, known as enslaving, has traditionally been studied in isometric pressing tasks. The purpose of this project was to build a device, an Inverse Piano (IP), to study finger interaction in non-isometric pressing tasks. The IP allows for fingers to be unexpectedly raised or lowered during pressing tasks. Fingers are perturbed by linear motors located directly under uni-dimensional force sensors, which serve as the “piano keys”. Motors are triggered using National Instruments LabVIEW. This allows key position and finger force data to be recorded simultaneously. The IP makes possible the studying of several factors on the finger force outcome and coordination. In particular, the following factors can be explored: (a) Finger combination. There are 15 combinations of the key manipulation: four 1-finger tasks (I, M, R, L, where the letters designate the index, middle, ring, and little finger respectively); six 2-finger tasks (IM, IR, IL, MR, ML, RL); four 3-finger tasks (IMR, IML, IRL, MRL) and one 4-finger task (IMRL). (b) Predictability of the key raising. The options are innumerable but can be roughly classified into three groups: (1) both the sequence and time intervals are unknown to the subjects; (2) the sequence is known but the time intervals are unknown; and (3) both the sequence and time intervals are known in advance. (c) Amplitude of key movement. The IP is capable of displacing fingers up to 2 cm, in increments less than 1 mm. (d) The speed of key movement. The IP can vary key movement rates of between 2 mm/s to 4,687 mm/s. (e) Resistance of the keys to the external force. The resistance can mimic different mechani--cal properties, e.g. elastic reistance which is proportional to the key displacement, damping resistance proportional to the speed, dry friction, etc. The magnitude of the resistance, e.g. ‘stiffness’, can also be varied. (f) Feedback with various options: (1) visual feedback on the computer screen, the subject can also see his/her hand; (2) no visual feedback on the screen, however the subject can see his/her hand; and (3) no feedback on the screen, the subject cannot see his/her hand. Thus far experimentation using IP has only investigated effects of varying magnitude of displacement.
机译:当一个人用单个手指移动或按压时,其他手指也会产生力(Kilbreath和Gandevia,1994; Li等,2004; Zatsiorsky等,2000)。已知有几个因素会导致这种响应:(1)外围机械耦合,(2)多位电机单元和(3)分散的中央命令。传统上,在等轴测压制任务中已研究了这种称为奴役的现象。该项目的目的是制造一种设备,即反钢琴(IP),以研究非等距按压任务中的手指交互作用。 IP允许在按压任务期间意外抬起或放下手指。手指受到直接位于一维力传感器下方的线性电动机的干扰,该传感器用作“钢琴键”。电机是使用National Instruments LabVIEW触发的。这样可以同时记录按键位置和手指力度数据。 IP使对手指力量结果和协调性的几个因素的研究成为可能。特别是,可以探索以下因素:(a)手指组合。按键操作有15种组合:4个1指任务(I,M,R,L,其中字母分别表示食指,中指,无名指和小指);六个2指任务(IM,IR,IL,MR,ML,RL); 4个3指任务(IMR,IML,IRL,MRL)和1个4指任务(IMRL)。 (b)密钥提出的可预测性。选项是无数的,但可以大致分为三类:(1)对象的顺序和时间间隔都是未知的; (2)顺序是已知的,但时间间隔是未知的; (3)顺序和时间间隔都是预先知道的。 (c)按键移动幅度。 IP能够以小于1毫米的增量移动最长2厘米的手指。 (d)按键移动的速度。 IP可以在2 mm / s到4,687 mm / s之间改变按键移动速率。 (e)按键对外力的抵抗力。阻力可以模仿不同的机械 -- 校准属性,例如与琴键位移成正比的弹性阻力,与速度成正比的阻尼阻力,干摩擦等。 “刚度”也可以变化。 (f)具有多种选择的反馈:(1)在计算机屏幕上的视觉反馈,对象也可以看到他/她的手; (2)屏幕上没有视觉反馈,但是被摄对象可以看到他/她的手; (3)屏幕上没有反馈,则被摄对象看不到他/她的手。迄今为止,使用IP进行的实验仅研究了位移大小不同的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号