【24h】

The IAEA Universal Nondestructive Assay Data Acquisition Platform (UNAP)

机译:原子能机构通用非破坏性测定数据采集平台(unap)

获取原文

摘要

The Universal NDA Data Acquisition Platform (UNAP) will be the next generation data acquisition system for the International Atomic Energy Agency (IAEA) attended and unattended non-destructive assay measurement equipment. The system will also be the principal data acquisition module for the Japan Nuclear Fuel Limited (JNFL) MOX Fuel Fabrication Plant (J-MOX) safeguards project. The primary goal of the UNAP development is for the new module to become the IAEA standard and replace existing Non-Destructive Assay (NDA) modules such as the JSR-12, the MiniGrand, the Advanced Multiplicity Shift Register (AMSR), and the JSR-14. The inputs to the UNAP will be a superset of the existing inputs of all these previous modules with flexibility to anticipate future developments. The core measurement capabilities of the UNAP include three multiplicity shift registers clocked at 50MHz, an eight channel combination scalar-derandomizer with output to one of the shift registers, dual current mode measurement channels with 30 femtoampere resolution, a list mode channel with 100 nanosecond resolution, four programmable threshold single channel analyzers (SCA), a 4-20mA channel, and several discrete digital inputs and isolated contact closure outputs. All measurement data is acquired and reduced by a Freescale PowerQUICC processor and is locally stored in a 16GByte solid state drive. The UNAP will authenticate and encrypt the data for transmission across the 100BaseT Ethernet interface to the data acquisition system. The instrument has three external 100BaseT ports connected through an internal switch to allow daisy chaining multiple UNAPs or direct connection to other Ethernet devices such as surveillance cameras. The UNAP includes three USB ports for access to the security dongle containing the tokens, connection to a USB memory drive, and for connection to plug and play USB devices for pass through control and collection from the data acquisition system. The UNAP has been architected around the commercial standard Compact Peripheral Component Interface (cPCI) bus which is prevalent in the military and space avionics industry. The 32-bit 33MHz cPCI bus has a peak 132Mbyte/sec data transfer rate and provides the interface between the processor board and the UNAP Data Acquisition board (UDA). This separation of functionality has allowed for a parallel development of the two principle boards, reducing both development cost and schedule. The cPCI bus is implemented on a 2-slot rigid backplane with flex-PCB extensions for the external interconnects directly to the UNAP enclosure. To increase robustness, all I/O on the two cPCI boards is through the backplane on unused pins. The Dual Current Mode (DCM) femtoammeter capability is provided on an additional PCB housed within a fully shielded enclosure inside the UNAP chassis. This DCM module includes the two femtoammeter channels, a negative 300V programmable bias supply, and a digital interface to the UDA board through the flex-PCB backplane. Also enclosed within the UNAP chassis are a programmable 2000V power supply for biasing 3He detectors, a low voltage power supply, and a lithium-ion battery with associated charging circuitry to provide 25 hours of operation during unforeseen power outages. The embedded PowerQUICC processor will operate on a realtime variant of Linux on the solid state drive. Also stored on the solid state drive will be the application code and the UNAP configuration table. All UNAP operating information such as thresholds, bias voltages, shift register gate widths, and trigger conditions will be stored in the configuration table. The operating system, application code, and configuration table can be updated or modified through authenticated input from a USB memory stick. In addition, the configuration table can be modified or updated through authenticated input from the Ethernet port. The specification for the UNAP is complete and the design team from Los Alamos National Laboratory
机译:通用NDA数据采集平台(UNAP)将成为参加和无人值守无损分析测量设备的国际原子能机构(IAEA)的下一代数据采集系统。该系统也将是日本核燃料有限公司(JNFL)MOX燃料制造厂(J-MOX)保障项目的主要数据采集模块。在UNAP发展的主要目标是为新的模块成为IAEA标准,取代现有的非破坏性分析(NDA)模块,如JSR-12,MiniGrand,高级多重移位寄存器(AMSR)和JSR -14。到UNAP的投入将是灵活所有这些以前模块的现有投入一个超预期的未来发展。所述UNAP的核心测量功能包括主频为50MHz的3个多重移位寄存器,一个八个信道组合标量去随机化器与输出到移位寄存器中的一个,双电流模式的测量通道30毫微微安的分辨率,100纳秒的分辨率列表模式信道四个可编程阈值的单通道分析仪(SCA),4-20mA的信道,以及若干离散的数字输入和分离触点闭合输出。所有的测量数据被采集并减少由飞思卡尔PowerQUICC处理器,并且被本地存储在一个16GByte固态驱动器。该UNAP将验证并为整个100BaseT以太网接口传输到数据采集系统对数据进行加密。该仪器具有通过内部开关连接以允许菊花链接多个UNAPs或其他以太网设备诸如监视摄像机直接连接三个外部100BaseT的端口。该UNAP包括用于访问包含令牌,连接到USB存储器驱动器,以及用于从数据采集系统通过控制和采集连接即插即用USB设备用于通加密锁三个USB端口。该UNAP已被构建周围的商业标准的紧凑型外围组件接口(cPCI的)总线是在军事和航空电子设备的空间行业普遍。 32位33MHz的CPCI总线具有峰值132Mbyte /秒的数据传输速率,并提供所述处理器板和UNAP数据采集板(UDA)之间的接口。这种功能分离已经允许用于两个原则板平行发展的,同时降低开发成本和进度。上述CPCI总线上与用于外部互连直接向UNAP外壳柔性PCB扩展2时隙刚性背板实现。为了提高鲁棒性,在两块cPCI板之外的所有I / O是通过对未使用引脚的背板。双电流模式(DCM)femtoammeter能力被设置在容纳在UNAP机箱内部完全屏蔽的外壳内的附加PCB。此DCM模块包括两个femtoammeter频道,一个负300V可编程偏置电源,并通过柔性印刷电路板背板的数字接口到UDA板。在UNAP机箱内还封入有用于偏置的3He探测器,低电压电源的可编程2000V电源,以及与相关联的充电电路的锂离子电池中意外停电提供20小时的操作。嵌入式的PowerQUICC处理器将在Linux的固态驱动器上的实时变体操作。也存储在固态驱动器上将是应用程序代码和UNAP配置表。所有UNAP操作信息,诸如阈值,偏置电压,移位寄存器的栅极宽度,并且触发条件将被存储在配置表中。操作系统,应用程序代码,并配置表可以被更新,或通过从一个USB记忆棒认证输入修改。此外,该配置表可以被修改或通过从以太网端口认证输入更新。对于UNAP规格齐全,并从洛斯阿拉莫斯国家实验室的设计团队

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号