首页> 外文会议>International conference on new developments on metallurgy and applicactions of high strength steels >COMPUTATIONAL DESIGN OF UHS STAINLESS STEEL STRENGTHENED BY MULTI-SPECIES NANOPRECIPITATES COMBINING GENETIC ALGORITHMS AND THERMOKINETICS
【24h】

COMPUTATIONAL DESIGN OF UHS STAINLESS STEEL STRENGTHENED BY MULTI-SPECIES NANOPRECIPITATES COMBINING GENETIC ALGORITHMS AND THERMOKINETICS

机译:多种纳米尺寸强化遗传算法和热动力学加强UHS不锈钢的计算设计

获取原文
获取外文期刊封面目录资料

摘要

A computational approach to design a new grade of precipitation hardened Ultra-High Strength (UHS) stainless steel is presented wherein genetic approaches are combined with thermodynamic computations. The composition scenarios are designed and optimized in order to obtain higher yield strength than the existing commercial counterparts by promoting the formation of desirable microstructures and suppressing the undesirable ones. The strength target is approached by forming a fine lath martensitic matrix and optimizing the number of nanoprecipitates (MX carbide, NiAl, Ni3Ti and Cu) particles based on thermokinetic theories. Corrosion resistance is accounted for by ensuring a minimum Cr content of 12 wt% in the matrix as precipitation has taken place. Four alloys are computationally designed which are strengthened by either MC carbides, Cu particles, Ni rich intermetallics, or a combination of all of them, considering 13 alloying elements (Al, C, Co, Cr, Cu, Mn, Mo, N, Nb, Ni, Si, Ti, V). The composition optimization is performed by allowing each element to potentially take 32 compositions in the given ranges which leads to a solution space containing 1020 options. The enormous computational effort is drastically reduced by applying the genetic optimization algorithm. The results of the analysis are compared to other computationally more expensive approaches (combinatorial and iterative optimization algorithms) obtaining similar results. The model predictions are also compared to a variety of existing commercial high-end engineering steels, showing that the design strategy presented here may potentially lead to significant improvements in strength.
机译:提供了一种设计新级沉淀的沉淀硬化超高强度(UHS)不锈钢的方法,其中遗传方法与热力学计算结合。设计和优化的组成场景,以通过促进期望的微观结构的形成并抑制不需要的,获得比现有的商业对应更高的屈服强度。通过形成精细的Lath马氏体基质并优化基于热动力学理论的纳米沉淀物(MX碳化物,尼亚,Ni3TI和Cu)颗粒的数量来接近强度靶。通过确保基质中的12wt%的最小Cr含量为沉淀,耐腐蚀性。通过MC碳化物,Cu颗粒,Ni富含性金属间质或所有这些合金的计算设计,考虑13合金元素(Al,C,Co,Cr,Cu,Mn,Mo,N,Nb ,ni,si,ti,v)。通过允许每个元素在给定的范围内允许每个元素来进行组合物优化,这导致含有1020个选项的溶液空间。通过应用遗传优化算法,大幅度减少了巨大的计算工作。将分析结果与其他计算更昂贵的方法(组合和迭代优化算法)进行比较,获得类似的结果。模型预测也与各种现有的商业高端工程钢相比,表明这里提出的设计策略可能导致强度的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号