首页> 外文会议>ASME International Combustion Engine Technical Conference >DEFINITION OF A LES NUMERICAL METHODOLOGY FOR THE SIMULATION OF ENGINE FLOWS ON FIXED GRID
【24h】

DEFINITION OF A LES NUMERICAL METHODOLOGY FOR THE SIMULATION OF ENGINE FLOWS ON FIXED GRID

机译:在固定网格上仿真发动机流模拟的LES数值方法的定义

获取原文
获取外文期刊封面目录资料

摘要

To improve the overall engine performance, it is necessary to clearly understand the main unsteady phenomena that occur inside an IC engine. Since experimental technique can provide only lump parameters, the CFD numerical approach has been identified as a valid alternative tool to perform detailed investigations on the fluid dynamics behaviours. The numerical analysis of engine flows is commonly performed by using RANS approach. Adopting a RANS methodology only the mean flow variable distributions could be obtained because the time average of the generic flow variable fluctuation is zero by definition. To perform an effective analysis about the unsteady characteristic of a generic flow and, in particular, of an engine flow it is necessary to improve the numerical solution level adopting the LES (Large Eddy Simulation) approach. LES solves directly the large scales of motion (responsible for the main energy transport inside the flow) while only the small scales are modelled using a Sub-Grid Scale model. Moreover, the LES approach could also be used as test bench case to properly define and understand how it is possible to improve the solution accuracy of RANS simulation. This paper regards the LES analysis of a steady nonreactive wall-bounded flow over a test bench engine geometry. In particular, two LES models, i.e., the Wall Adaptive Local Eddy-Viscosity (WALE) [25] model and the one-equation Dynamic Model by Kim and Menon [23,24,29] have been tested. The numerical set-up has been defined performing a preliminary parametric CFD simulations on a basic flow over a backward facing step case. In particular, a bounded second order central differencing scheme was adopted and a discussion of the kinetic energy conservation attitude of such a scheme is performed. LES results have been compared to available experimental LDA measurements of mean and rms fluctuations of both axial and tangential velocity components and with numerical predictions obtained by an optimized RANS simulation of the same case. This paper shows the advantages and the limits of the LES simulation approach applied to IC engine flows.
机译:为了提高整体发动机性能,有必要清楚地了解IC发动机内部发生的主要不稳定现象。由于实验技术可以仅提供块参数,因此CFD数值方法已被识别为有效的替代工具,以便对流体动力学行为进行详细研究。通过使用RAN方法通常进行发动机流的数值分析。采用RAN方法仅可以获得平均流量可变分布,因为通过定义归零的通用流量变波的时间平均值为零。为了对通用流动的不稳定特性进行有效的分析,特别是发动机流动,需要改善采用LES(大涡模拟)方法的数值解决方案。 LES直接解决了大型运动尺度(负责流量内的主要能量传输),而使用子网格刻度模型仅建模小尺度。此外,LES方法也可以用作测试台案例,以适当地定义和理解如何提高RAN模拟的溶液精度。本文对测试台发动机几何形状的稳定非反应壁限流的LES分析。特别是,已经测试了两种LES模型,即壁自适应局部涡粘度(WALE)[25]模型和单位动态模型[23,24,29]。已经定义了数值设置,在向后面对面的步骤外壳上进行了对基本流程的初步参数CFD模拟。特别地,采用了界限的二阶中心差分方案,并进行了这种方案的动能节约态度的讨论。已经将LES结果与轴向和切向速度分量的可用实验LDA测量结果进行了比较,并且通过优化的RAN模拟获得的数值预测。本文显示了应用于IC发动机流量的LES仿真方法的优点和限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号