首页> 外文会议>Symposium on Space Nuclear Power and Propulsion >A Comparison of Discrete Element Modeling, Finite Element Analysis, and Physical Experiment of Granular Material Systems in a Direct Shear Cell
【24h】

A Comparison of Discrete Element Modeling, Finite Element Analysis, and Physical Experiment of Granular Material Systems in a Direct Shear Cell

机译:直接剪切单元中粒状材料系统的离散元素建模,有限元分析和物理实验的比较

获取原文

摘要

In order to design future equipment to operate in a lunar environment, the ability to simulate such equipment using computer aided engineering (CAE) is essential. The conditions of lunar gravity cannot be reproduced on earth, thus the virtual environment is the only way to test design concepts for lunar applications. Traditional CAE for handling granular materials relies on finite element analysis (FEA), which is challenged by the lack of reliable constitutive laws. This challenge is met by using Discrete Element Modeling (DEM). However the current state-of-the-art in DEM has two major limitations which must be overcome to improve the usefulness to NASA and the commercial sector applications: the computational intensive nature of the software, and the lack of an established methodology to determine the particle properties to accurately model a given physical system. We present a three-way parallel study, physical/FEA/DEM of a direct shear test for two materials to compare the differences and similarity of the FEA and DEM results. The two materials used are 3M glass bubbles and a lunar simulant; one consists of extremely smooth particles and the other extremely rough. We test the ability of DEM for irregular particle by using simple spherical clusters to simulate such rough material. We compare the bulk friction behavior between the physical experiment and those from FEA and DEM. We also compare the internal stress field between the FEA and DEM. Both FEA and DEM can simulate the physically measured bulk friction. However, not surprisingly details of the stress field differ between different methods. To overcome the particle number limitation, DEM results are obtained using much coarser particle size. By using several different sizes we find the bulk friction depends on the particle size. Based on this study, the preliminary implications are that FEA and DEM produce different stress distributions, even in a simple geometry such as the direct shear; DEM can simulate irregular rough particle systems such as the lunar regolith; and the coarsening effect is non-trivial.
机译:为了设计未来的设备在月球环境下进行操作,能够使用计算机辅助工程(CAE)是必不可少的模拟此类设备。月球重力的条件不能在地球上被再现,从而所述虚拟环境是唯一的方法的月球应用测试的设计概念。传统CAE用于处理粒状材料依赖于有限元分析(FEA),这是由缺乏可靠的本构关系挑战。这种挑战是利用离散元建模(DEM)满足。但是目前国家的最先进的DEM有必须克服,以提高效用美国宇航局和商业领域应用的两个主要限制:该软件的计算密集型性质,以及缺乏既定的方法来确定颗粒性质来准确地建模给定的物理系统。我们提出了一种三路平行研究中,直剪试验两种材料以比较FEA和DEM结果的差异和相似性的物理/ FEA / DEM。所使用的两种材料3M玻璃泡和月球模拟;一个由极其光滑粒子和其他非常粗糙。我们通过使用简单的球形簇模拟这样粗糙的材料测试的DEM为不规则的颗粒的能力。我们比较了物理实验和从FEA和DEM之间的摩擦散行为。我们还比较有限元分析和DEM之间的内应力场。既FEA和DEM可以模拟物理测量散装摩擦。然而,这并不奇怪详细介绍了应力场的不同方法之间是不同的。为了克服粒子数的限制,使用粗得多的颗粒尺寸得到DEM结果。通过使用几种不同的尺寸,我们发现大部分的摩擦依赖于粒度。根据这项研究,初步含义是FEA和DEM产生不同的应力分布,即使在简单的几何形状,如直剪; DEM可以模拟不规则的粗糙粒子系统,如月壤;和粗化的效果是不平凡的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号