首页> 外文会议>Conference on Chemical, Biological, Radiological, Nuclear, and Explosives Sensing >Routes to enabling Raman detection of in-theatre biological contaminants over extended range: Spatial Heterodyne Spectroscopy, Time-resolved Raman measurements, and the march towards the deep-UV
【24h】

Routes to enabling Raman detection of in-theatre biological contaminants over extended range: Spatial Heterodyne Spectroscopy, Time-resolved Raman measurements, and the march towards the deep-UV

机译:在扩展范围内启用剧院内生物污染物的拉曼检测的路线:空间外差光谱,时间分辨拉曼测量,以及向深紫色的3月

获取原文

摘要

We report on an investigation addressing the challenge of the rapid detection of in-theatre surface chemical, biological and explosive (CBE) contaminants at a stand-off distance (>lm). The techniques we will describe are fundamentally underpinned by highly characteristic, molecule-specific Raman scattering. The implementation of Raman-at-range is problematic due to the extremely weak scattering cross-sections associated with this process, particularly when undertaken at the near-infrared wavelengths usually mandated by the need to suppress fluorescence. Excitation at shorter (near-UV) wavelengths can result in a two-order increase in scatter and this, combined with the extremely high throughput associated with Spatial Heterodyne Spectrometer (SHS) instrumentation, proves a viable route to Raman-at-range. We then implement time resolved spectral measurements on the ~100ps time scale to exploit the difference in generation timescale associated with Raman scatter and fluorescence generation; once so divorced the characteristics (both temporal and spectral) of the previously-troublesome fluorescent light can be embraced as an additional detection tool. We will show how SHS instrumentation, coupled with low-noise detector technology, can offer over four orders of magnitude improvement in spectral signal-to-noise level compared to conventional Czerny-Turner 'slitted' spectrometers using lower-cost linear CCD detectors. Finally, we show how a move to the deep-UV "Resonance-Raman" excitation region of sub-250nm excitation leads both to enormous improvements in generated Raman signal, and spectral separation of the precious Raman from the troublesome fluorescence signal. We show the viability of this approach with biological spore simulant samples provided by DSTL.
机译:我们报告了一个调查,解决了在脱扣距离(> LM)处快速检测剧院表面化学,生物和炸药(CBE)污染物的挑战。我们将描述的技术基本上受到高特征,特异性分子的拉曼散射的基本上的基础。由于与该过程相关的极小散射横截面,拉曼 - 范围的实施是有问题的,特别是当在通常需要抑制荧光的近红外波长时进行的近红外波长进行。较短(近UV)波长的激发可导致散射的两个阶增加,并将其与空间外差光谱仪(SHS)仪器相关的极高的吞吐量组合,证明了一种可行的拉曼途径。然后,我们在〜100ps的时间尺度上实现时间解析的光谱测量,以利用与拉曼散射和荧光产生相关的产生时间尺度的差异;一旦如此离心了先前令人难以置信的荧光的特性(时间和光谱)可以作为额外的检测工具被包围。我们将展示SHS仪器,与低噪声探测器技术相结合,可以提供与使用低成本线性CCD检测器的传统胫骨转盘的狭窄的光谱仪相比提供超过四个级别提高。最后,我们展示了Sub-250nm激励的深度“共振拉曼”激发区域的移动既以产生的拉曼信号的巨大改进,以及来自麻烦的荧光信号的贵重拉曼的光谱分离。我们展示了这种方法的可行性与DSTL提供的生物孢子模拟样品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号