首页> 外文会议>ACS National Meeting Exposition >Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O_(12) Garnet Li Ion Solid Electrolyte
【24h】

Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O_(12) Garnet Li Ion Solid Electrolyte

机译:在Al - Ta掺杂Li7la3zR2O_(12)石榴石Li离子固体电解质中的四方与立方相位稳定性

获取原文

摘要

Solid Li-ion electrolytes have been attracting increasing interest as a means to address the safety issues associated with flammable liquid electrolytes and enable the next generation of battery technology. In order to be viable, significantly high ionic conductivity must be exhibited. The Li rich garnet crystal structure based on Zr and discovered by Weppner1 et. al. in 2007 (Li7La3Zr2O12, LLZO) has been identified as a solid electrolyte with conductivities of ~ 1 mS/cm when stabilized as the cubic polymorph. However, a tetragonal polymorph of LLZO is also possible and exhibits ~2 orders of magnitude lower ionic conductivity. The cubic phase of LLZO can be stabilized by supervalent charge doping where the excess charge is balance by Li vacancies . It has been predicted computationally by Bernstein et. al. that the critical Li vacancy concentration to stabilize the cubic phase is 0.4 - 0.5 mols per formula unit . This critical doping level has been confirmed experimentally for Al~(3+) doping on the Li~(1+) site. However, it is advantageous to dope on the primary lattice, which acts as a skeletal framework, instead of on the Li sublattice, where the diffusion of the charge carrying ions takes place. Ta~(5+) substitution for Zr~(4+) has been demonstrated in the literature as a way to stabilize the cubic polymorph of LLZO. However, compositions which were below the critical doping level (subcritically doped) have been reported as cubic. Exploring the phase stability of LLZO is complicated by the fact that Al ions can be incorporated into the garnet from Al2O3 calcination media at high temperature and act as a dopant. Furthermore, Al has a disproportionately larger effect as a dopant compared to Ta because it creates twice the Li vacancies (Kroger-Vink notation: Li_(Li)~x + Al~x→ Al_(Li)~~(··)+ 2V'_(Li) vs. Zr°_(Zr) + M° → Ta·_(Zr) + V'_(Li)). Therefore, a small amount of Al can make a large difference on the Li vacancy concentration, and thus the resulting phase. Because of this, compositions which should have an insufficient number of Li vacancies from the purposefully added dopant to stabilize the cubic phase have been reported as cubic.
机译:固体锂离子电解质一直吸引了越来越兴趣的兴趣,以解决与易燃液体电解质相关的安全问题,并实现下一代电池技术。为了可行,必须表现出显着高的离子电导率。基于Zr的李丰富的石榴石晶体结构由Weppner1 et发现。 al。在2007年(Li7la3zR2O12,LLZO)已被鉴定为固体电解质,当稳定为立方多晶型物时,具有〜1ms / cm的电导率。然而,LLZO的四边形多晶型物也是可能的并且表现出〜2的数量级较低的离子电导率。 LLZO的立方阶段可以通过监督费用掺杂稳定,其中超额费用是LI职位空缺。它已被伯尔尼斯坦et计算地预测。 al。临界LI空位浓度稳定立方相为每配方单位为0.4-0.5摩尔。在Li〜(1+)位点上的Al〜(3+)掺杂的实验证实了这种关键的掺杂水平。然而,在初级格子上涂在骨骼框架上是有利的,而不是在Li子块上,其中发生电荷携带离子的扩散。在文献中证明了Zr〜(4+)的Ta〜(5+)取代作为稳定LLZO立方多晶型物的方法。然而,据报道,低于临界掺杂水平(患有临界掺杂水平的组合物(患有临界掺杂水平)作为立方体。探索LLZO的相位稳定性使Al离子可以在高温下从Al2O3煅烧介质掺入石榴石中并用作掺杂剂。此外,与TA相比,Al与掺杂剂的效果不成比例,因为它产生了两倍的LI空缺(Kroger-Vink符号:Li_(Li)〜x + Al〜X→Al_(Li)~~(·)+ 2V '_(li)与zr°_(zr)+ m°→ta·ta·ta _(zr)+ v'_(li))。因此,少量的Al可以对LI空位浓度产生很大差异,从而产生所得相。因此,已据报道,从有目的地添加掺杂剂稳定立方阶段的LI空位数量不足的组合物已被报告为立方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号