首页> 外文会议>ACS National Meeting Exposition >MULTIPLE AMBIENT HYDROLYSIS DEPOSITION OF TIN OXIDE INTO NANOPOROUS CARBON AS A STABLE ANODE FOR LITHIUM-ION BATTERIES
【24h】

MULTIPLE AMBIENT HYDROLYSIS DEPOSITION OF TIN OXIDE INTO NANOPOROUS CARBON AS A STABLE ANODE FOR LITHIUM-ION BATTERIES

机译:氧化锡中的多个环境水解沉积纳米多孔碳作为锂离子电池的稳定阳极

获取原文

摘要

Intense efforts have been devoted to exploring new electrode materials for Li-ion batteries (LIBs) in pursuing higher energy density and better cycling stability. Compared to the conventional graphitic anodes, alloying anodes have attracted much attention due to their high theoretical capacities. Among the alloying anodes, SnO2 is an attractive option due to its high theoretical capacity. The hurdle for SnO2 as an anode has been its rapid capacity fading associated to the large Sn volume expansion (up to 259%) during Li~+ insertion. One promising approach is to encapsulate SnO2 or Sn phases into a conducting conduit to accommodate the volumetric change. Therefore, efforts have been devoted to integrating SnO2 or Sn into porous carbonaceous materials such as mesoporous carbon, graphene4 or carbon nanotubes.5 Herein, we utilize the ambient hydrolysis deposition (AHD) methodology developed in our laboratory for a multiple deposition of SnO2 by pre-adsorbing water in a nanoporous carbon, CMK-3.6 AHD utilizes a sequential water adsorption followed by hydrolysis to deposit controllable amounts of SnO2 inside the pores of CMK-3. We then investigated these tailordesigned materials as anodes for LIBs to address the volume-change challenge for SnO2. A SnO2/carbon composite with an intermediate loading of SnO2 showed great cycling stability for 300 cycles with 573 mAh/g retained at a high current density 200 mA/g.
机译:在追求更高的能量密度和更好的循环稳定性方面,探索了锂离子电池(LIBS)的新电极材料的强烈努力。与传统的石墨阳极相比,由于其高理论能力,合金化阳极引起了很多关注。在合金化阳极中,由于其高理论能力,SnO2是一种吸引人的选择。 SnO2作为阳极的障碍是其在Li〜+插入期间与大的SN体积膨胀(高达259%)相关的快速容量衰落。一种有希望的方法是将SnO2或Sn相封装成导电管道以适应体积变化。因此,已经致力于将SnO2或Sn整合到多孔碳质材料中,例如介孔的碳,石墨烯4或碳纳米管.5,我们利用我们实验室在我们的实验室中开发的环境水解沉积(AHD)方法通过前一次沉积SnO2在纳米孔碳中吸收水,CMK-3.6 AHD利用顺序水吸附,然后水解,以沉积CMK-3孔内的可控量的SnO2。然后,我们将这些尾翼的材料作为阳极调查为LIB的阳极,以解决SNO2的体积变化挑战。具有SnO2中间负载的SnO2 /碳复合材料显示出300次循环的循环稳定性,以高电流密度200mA / g保留573mAh / g。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号