首页> 外文会议>Larry Horti Fairberg Workshop on Control and Regulation of Transport Phenomena in Biological Systems with Special Emphasis on the Cardiac System >Multiscale and Modular Analysis of CardiacEnergy Metabolism Repairing the Broken Interfaces of Isolated SystemComponents
【24h】

Multiscale and Modular Analysis of CardiacEnergy Metabolism Repairing the Broken Interfaces of Isolated SystemComponents

机译:多尺度和模块化分析Cardiacenergy代谢修复孤立系统组分破碎界面

获取原文

摘要

Computational models of large molecular systems can be assembled from modules representingbiological function emerging from interactions among a small subset of molecules. Experimen-tal information on isolated molecules can be integrated with the response of the network as awhole to estimate crucial missing parameters. As an example, a "skeleton" model is analyzed forthe module regulating dynamic adaptation of myocardial oxidative phosphorylation (OxPhos)to fluctuating cardiac energy demand. The module contains adenine nucleotides, creatine, andphosphate groups. Enzyme kinetic equations for two creatine kinase (CK) isoforms were com-bined with the response time of OxPhos (t_(mito);generalized time constant) to steps in the cardiacpacing rate to identify all module parameters. To obtaint_(mito),the time course of O_2uptake wasmeasured for the whole heart. An O_2 transport model was used to deconvolute the whole-heartresponse to the mitochondrial level. By optimizing mitochondrial outer membrane permeabilityto 21 μm/s the experimental t_(mito)= 3.7 swas reproduced. Thisin vivovalue is about four timeslarger, or smaller, respectively, than conflicting values obtained from two different in vitro stud-ies. This demonstrates an important rule for multiscale analysis: experimental responses andmodeling of the system at the larger scale allow one to estimate essential parameters for theinterfaces of components which may have been altered during physical isolation. The model cor- rectly predicts a smaller when CK activity is reduced. The model further predicts a slowerresponse if the muscle CK isoform is overexpressed and a faster response if mitochondrial CKis overexpressed. The CK system is very effective in decreasing maximum levels of ADP duringsystole and reducing average P_i levels over the whole cardiac cycle.
机译:大分子系统的计算模型可以从代表生物功能的模块组装在不同分子的相互作用中出现的。有关隔离分子的实验性信息可以与网络的响应相结合,以估计至关​​重要的缺失参数。作为一个例子,分析了“骨架”模型进行了模块调节心肌氧化磷酸化(Oxphos)以波动心能需求的动态调节。该模块含有腺嘌呤核苷酸,肌酸,亚磷酸基团。用于两种肌酸激酶(CK)同种型的酶动力学方程与汤膦(T_(MITO);广义时间常数)的响应时间进行COM-培训,以识别所有模块参数的心脏间隔率。令人厌恶(MITO),O_2UPTAKE的时间过程为整个心脏。 O_2传输模型用于对线粒体水平的全部听力进行解作消化。通过优化线粒体外膜渗透率21μm/ s的实验T_(MITO)= 3.7 SWA再现。该发明的VivoValue分别比从两种不同体外螺柱IES获得的相互矛盾的值,分别为四倍或更小。这证明了多尺度分析的重要规则:在较大尺度下的系统的实验响应和修改允许一个估计在物理隔离期间可能改变的部件的interpace的必要参数。当CK活动减少时,模型预测更小。如果肌肉CK同种型过表达,则该模型进一步预测了较慢的响应,并且如果线粒体CKIS过表达,则更快的响应。 CK系统在降低ADP Duringsystole的最大水平并降低整个心动周期的平均P_I水平方面非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号