首页> 外文会议>Joint International Topical Meeting on Mathematics Computations and Supercomputing in Nuclear Applications >MEAN PROPAGATION KERNELS FOR TRANSPORT IN CORRELATED STOCHASTIC MEDIA AT UNRESOLVED SCALES, ILLUSTRATION WITH A PROBLEM IN ATMOSPHERIC RADIATION
【24h】

MEAN PROPAGATION KERNELS FOR TRANSPORT IN CORRELATED STOCHASTIC MEDIA AT UNRESOLVED SCALES, ILLUSTRATION WITH A PROBLEM IN ATMOSPHERIC RADIATION

机译:在未解决的鳞片上的相关随机介质中运输的平均传播核,与大气辐射存在的问题

获取原文

摘要

A simple and effective framework is presented for modeling transport processes unfolding at computationally and/or observationally unresolved scales in scattering, absorbing and emitting media. The new approach acts directly on the spatial (i.e., propagation) part of the kernel in the integral formulation of the generic linear transport equation framed for stochastic media with a wide variety of spatial correlations, going far beyond the Markov-Poisson class used in the classic Pomraning-Levermore model. This statistical look at the extinction of un-coHided particle beams takes us away from the standard exponential law of transmission. New transmission laws arise that are generally not exponential, often not even for asymptotically large jumps. This means that, from this perspective on random spatial variability, there is no "effective medium" per se nor homogenization technique that can be used to describe the effects of unresolved fluctuations of the collision coefficient. However, one can still rewrite the transport equation, at least in its integral form, in a manner that looks like its counterpart for uniform media, but with a modified propagation kernel. Implementation in a Monte Carlo scheme is trivially simple and numerical results are presented that illustrate the bulk effect of the new parameterization for plane-parallel geometry. We survey time-domain diagnostics of solar radiative transfer in the Earth's cloudy atmosphere obtained recently from high-resolution ground-based spectroscopy, and it is shown that they are explained comprehensively by the new model. Finally, we discuss possible applications of this modeling framework in nuclear engineering.
机译:提出了一种简单且有效的框架,用于在散射,吸收和发射介质中在计算和/或观察到的缩小展开的建模传输过程。新方法直接在内核的空间(即,传播)部分上,在通用线性传输方程的积分配方中,用于随机介质的随机介质具有各种空间相关性,远远超出马尔可夫 - 泊松类经典粉扑杠杆模型。这种统计看不合作粒子梁的灭绝将使我们远离标准的指数传播规律。产生的新传输法通常不是指数,甚至甚至都没有渐近大的跳跃。这意味着,从这种角度对随机空间变异性,没有“有效介质”本身或均质化技术可用于描述碰撞系数的未解决波动的影响。然而,人们仍然可以以与统一媒体的对应物的方式重写传输方程,至少以其积分形式,但是具有修改的传播内核。在蒙特卡罗方案中的实现是简单的简单简单的,并提出了数值结果,其示出了用于平行平行几何形状的新参数化的散装效应。我们在最近从高分辨率地面光谱学获得的地球混浊气氛中的太阳辐射转移的时域诊断调查了太阳辐射转移的时域诊断,并显示了新模型的全面解释。最后,我们讨论了核工程中该建模框架的可能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号