首页> 外文会议>Joint International Topical Meeting on Mathematics Computations and Supercomputing in Nuclear Applications >RADIONUCLIDE TRANSPORT CALCULATIONS FROM HIGH-LEVEL LONG-LIVED RADIOACTIVE WASTE DISPOSAL IN DEEP CLAYEY GEOLOGIC FORMATION TOWARD ADJACENT AQUIFERS
【24h】

RADIONUCLIDE TRANSPORT CALCULATIONS FROM HIGH-LEVEL LONG-LIVED RADIOACTIVE WASTE DISPOSAL IN DEEP CLAYEY GEOLOGIC FORMATION TOWARD ADJACENT AQUIFERS

机译:放射性核素运输计算从深层粘土地质形成朝向相邻含水层的高水平长期放射性废物处理

获取原文

摘要

In the context of high-level nuclear waste repository safety calculations, the modeling of radionuclide migration is of first importance. Three dimensional radionuclide transport calculations in geological repository need to describe objects of the meter scale embedded in geologic layer formations of kilometer extension,, A complete and refined spatial description would end up with at least meshes of hundreds of millions to billions elements The resolution of this kind of problem is today not reachable with classical computers due to resources limitations,. Although parallelized computation appears as potential tool to handle multiscale calculations, to our knowledge no attempt have been yet performed,. One emerging solution for repository safety calculations on very large cells meshes consists in using a domain decomposition approach linked to massive paiallelized computer calculation,. In this approach, the repository domain is divided in small elementary domains and transport calculation are performed independently on different processor for each elementary domain.Before to develop this possible solution, we performed some preliminary test in order to access the order of magnitude of cells needed to perform converged calculation on one elementary disposal domain and to check if Finite Volume (FV) based on Multi Point Flux Approximation (MPFA) spatial scheme or more classical Mixed Hybrid Finite Element (MHFE) spatial scheme were adapted for those calculations in highly heterogeneous porous media,. Our preliminary results point out that MHFE and VF schemes applied on non-panalellepipedic hexahedral cells for flow and transport calculations in highly heterogeneous media gave satisfactory results. Nevertheless further investigations and additional calculations are needed in order to exhibit the mesh discretization level needed to perform converged calculations.
机译:在高级核废料储存库安全计算的背景下,放射性核素迁移的建模是首先重要性。地质储存库中的三维放射性核素运输计算需要描述嵌入米尔延伸的地质层形成的仪表级的物体,完整和精致的空间描述将最终用数十亿数百百万到数十亿元素来解决这个问题由于资源局限性,今天没有与古典计算机无法访问的问题,虽然并行化计算显示为处理多尺度计算的潜在工具,但对于我们的知识而言,没有尝试已经进行了。对于非常大的单元格的存储库安全性计算的一个新兴解决方案包括使用与大规模PaialLelized计算机计算相关的域分解方法,。在这种方法中,存储库域被划分为小型域,并且在每个基本域的不同处理器上独立地执行传输计算。我们执行了一些初步测试,以便访问所需的单元格幅度级为了在一个基本处理领域进行融合计算,并检查基于多点通量近似(MPFA)空间方案或更古典混合混合有限元(MHFE)空间方案的有限体积(FV)是否适用于高度异质多孔的那些计算媒体,。我们的初步结果指出,在高度异质介质中用于流动和运输计算的非Panalellepipedic六半面细胞上应用MHFE和VF方案给出了令人满意的结果。然而,需要进一步的调查和额外的计算,以表现出融合计算所需的网格离散化水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号