首页> 外文会议>International Conference on Frontiers of Characterization and Metrology for Nanoelectronics >Revelation of Pattern formation in Single Ferromagnetic CoFeB Film by Using the Giant Spin Hall Spin Torque
【24h】

Revelation of Pattern formation in Single Ferromagnetic CoFeB Film by Using the Giant Spin Hall Spin Torque

机译:采用巨型旋转霍尔旋转扭矩,单一铁磁CoFeB薄膜中图案形成的启示

获取原文

摘要

Current induced torque enables magnetization switching via a spin transfer torque mechanism, viz., the spin angular momentum of conduction electrons was transferred to the local magnetization. This phenomenon exhibits an important impact on the recording technology, since the opposite (upward/downward) magnetization configurations can be assigned as "0" and "1", respectively, thus leading information to be encoded/decoded electrically [1]. Examples of which can be extensively found, such as magnetic domain wall logics and spin transfer torque random access memory (STT-RAM) in which the magnetization states can be reconfigured via a so called spin transfer torque mechanism [2]. However, the major obstacle is to increase the energy efficiency by lowering the switching current (10~(10-12) A/m~2) which co-introduces Joule heating, Oersted fields, etc. Exploring novel mechanisms and materials therefore, forms as the dominant trend for which could overcome the above barrier, such as systems with perpendicular magnetization anisotropics, and spin textures (including (anti)vortices, skyrmion). Amongst them, a recent progress have demonstrated the electrical control of magnetic memory and nonvolatile spin logics through in-plane current injection - Spin torque switching with the Giant spin Hall effect in a perpendicularly magnetized Ta/CoFeB/MgO/Ta heterostructure. Owing to the presence of giant spin Hall angle (θsh ≈ 0.12 - 0.15) of the high-resistivity β-tantalum film, the electrical current flows in β-Ta thin film hence produces an abrupt switching of the adjacent ferromagnetic CoFeB layer through the spin Hall spin torque [3].
机译:电流诱导扭矩通过自旋转印扭矩机构,Viz能够实现磁化切换。,传导电子的旋转角动量被转移到局部磁化。这种现象对记录技术表现出重要的影响,因为相反(向下/向下)磁化配置可以分别被分配为“0”和“1”,因此电气地进行编码/解码的引导信息[1]。可以广泛地发现的示例,例如磁畴壁逻辑和旋转传递扭矩随机存取存储器(STT-RAM),其中可以通过所谓的自旋传递扭矩机构进行磁化状态[2]。然而,主要障碍是通过降低开关电流(10〜(10-12)A / M〜2)来提高能量效率,该电流共同引入焦耳加热,奥尔泰田等探索新型机制和材料,因此作为可以克服上述屏障的主导趋势,例如具有垂直磁化各向异性的系统,以及旋转纹理(包括(反)涡旋,斯基芯)。其中,最近的进展已经证明了通过在平面内电流注入的磁存储器和非易失性自旋逻辑的电控制 - 在垂直磁化的TA / CoFeB / MgO / Ta异质结构中,具有巨型旋转霍尔效应的旋转扭矩切换。由于高电阻率β-钽膜的巨型旋转霍尔角(θsh≈0.12-0.15),电流在β-Ta薄膜中流动,因此通过旋转产生相邻的铁磁CofeB层的突然切换霍尔旋转扭矩[3]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号