首页> 外文会议>Global Workshop on Digital Soil Mapping >ARE CURRENT SCIENTIFIC VISUALISATION ANDVIRTUAL REALITY TECHNIQUES CAPABLE TO REPRESENTREAL SOIL-LANDSCAPES?
【24h】

ARE CURRENT SCIENTIFIC VISUALISATION ANDVIRTUAL REALITY TECHNIQUES CAPABLE TO REPRESENTREAL SOIL-LANDSCAPES?

机译:目前的科学可视化和virtual现实技术能够代表土壤 - 景观吗?

获取原文

摘要

Real soil-landscapes are complex consisting of an inextricable mix of patterns and noise varying continuously in the space–time continuum. Soils and parent material show grad-ual variations in the horizontal and vertical planes forming three-dimensional (3D) bodies that are commonly anisotropic. There is no real beginning and end point in soil-landscapes because environmental conditions are dynamically changed through water flow, biogeo-chemical processes and human activities. The strengths of soil-landscape modelling lies in hypothesis testing, understanding causal linkages between environmental factors and their interrelationships within a spatial and temporal explicit context. To develop virtual soil-landscape models entails: (i) conceptualisation, that is defining the model framework (e.g. finite space elements); (ii) reconstruction, that is describing and quantifying underlying conditions and behaviour and (iii) scientific visualisation (SciVis), that is abstracting real soil-landscapes into a format that we can comprehend and that helps us to understand the complexity of soil-landscapes. The primary objective in data visualisation is to gain insight into an information space by mapping data onto graphical primitives. Capabilities and limitations of SciVis and virtual reality (VR) techniques are discussed in this chapter. Only recently 3D soil-landscape models have been emerging. We present a case study that translated the spatio-temporal water-table dynamics of a flatwood soil-landscape in Florida into a virtual domain using a geostatistical method to reconstruct the soil-landscape and Virtual Reality Modelling Language (VRML) enhanced with External Authoring Interface (EAI) for visualisation and implementation of interactive functions. Just as maps can visually enhance the spatial understanding of phenomena, interactive spatio-temporal applications can enhance our understanding of complex environmental systems and the underlying transport processes driving soil and water quality.
机译:真正的土壤 - 景观是复杂的,包括在时空连续内连续不同的模式和噪音混合。土壤和母材显示出形成普通各向异性的三维(3D)体的水平和垂直平面中的毕业 - UAL变化。土壤 - 景观中没有真正的开始和终点,因为通过水流动,生物盖 - 化学过程和人类活动动态地改变了环境条件。土壤景观模型的优势在于假设检验,了解环境因素与空间和时间明确背景下的相互关系的因果关系。开发虚拟土壤景观模型需要:(i)概念化,即定义模型框架(例如有限空间元素); (ii)重建,即描述和量化潜在的条件和行为和(iii)科学可视化(SCIVIS),它将真正的土壤 - 景观抽象成一种我们可以理解的格式,有助于我们了解土壤 - 景观的复杂性。数据可视化的主要目标是通过将数据映射到图形基元来获得信息空间。本章讨论了SCIVIS和虚拟现实(VR)技术的能力和限制。只有最近的3D土壤景观模型一直在涌现。我们展示了一个案例研究,将佛罗里达州的Flatwood土壤景观的时空水表动力学翻译成使用地质统计方法来重建土壤景观和虚拟现实建模语言(VRML)的虚拟领域,并使用外部创作界面增强(EAI)用于可视化和实施交互功能。正如地图可以在视觉上增强对现象的空间理解一样,互动时空应用可以增强我们对复杂的环境系统和潜在的运输过程的理解,驱动土壤和水质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号