首页> 外文会议>ASEE Annual Conference Exposition >Developing an Induction Heating System Laboratory with DSP Microprocessors and Power Electronic Devices
【24h】

Developing an Induction Heating System Laboratory with DSP Microprocessors and Power Electronic Devices

机译:使用DSP微处理器和电力电子设备开发感应加热系统实验室

获取原文

摘要

This induction heating system laboratory will be integrated into our existing energy conversion labs for senior students. Students will not only understand how the high alternating current induces eddy current in the work piece to convert the resistive losses into thermal energy, but will also observe that the work piece gradually heats up and eventually starts to glow red. The principle of induction heating is to convert electricity to thermal energy inside a conductive work piece by using alternating magnetic fields. The energy conversion efficiency is up to 95% for magnetic materials, and contamination is minimized due to the non-contact heating mode. Therefore, induction heating has been widely used in steel industries for many years. Most engineering students are baffled by magnetic field theories since magnetic fields are not something that they can see, touch or feel except through mathematical equations. To assist students' understanding of this energy conversion process, we are developing an induction heating system laboratory to cover engineering topics in applied magnetic field theories, communication systems, computer networks, power systems, power electronics, sensors, embedded systems, and control systems. In order to generate high strength alternating electromagnetic fields, a switching mode power supply is utilized to feed high frequency current to the induction coils. The major components of the switching mode power supply are DC diode bridges, DC filters, DC-AC IGBT invertors, matching transformers, and capacitor banks. A DSP microprocessor development board is utilized to generate the Pulse Width Modulation signals to drive IGBT devices. Also, zero-voltage switching techniques and closed-loop controls are used to control the output power levels. Infinite impulse filters and fast Fourier transform are built into the DSP microprocessors to obtain real time frequency spectrum analysis of system harmonics. The temperature of the work piece can be observed by using an infrared temperature sensor and the measured temperature can also be fed back to the main DSP microprocessor. The proper output power level adjustment by the microprocessor creates better temperature profiles in the work piece. The students are exposed to the commercial finite-element magnetic field analysis software which provides a visual representation of the magnetic field in the form of flux line plots and scaled color maps. In our current energy propagation class, we introduce and utilize Infolytica MagNet to calculate the magnetic field strength at different frequencies. This software package can also generate animations of alternating current magnetic fluxes in the work piece.
机译:这种感应加热系统实验室将集成到我们现有的高级学生的能源转换实验室。学生不仅可以了解高交流电流如何在工件中引起涡流,以将电阻损耗转化为热能,但也将观察到工件逐渐加热,最终开始发光。感应加热原理是通过使用交流磁场将电力转换为导电工件内的热能。磁性材料的能量转换效率高达95%,由于非接触式加热模式,污染最小化。因此,感应加热已广泛应用于钢铁工业多年。大多数工程学生被磁场理论困扰,因为磁场不是通过数学方程可以看到,触摸或感受的东西。为了帮助学生对这种能源转换过程的理解,我们正在开发一个感应加热系统实验室,以涵盖应用磁场理论,通信系统,计算机网络,电力系统,电力电子,传感器,嵌入式系统和控制系统的工程主题。为了产生高强度交流电磁场,利用开关模式电源来向感应线圈馈送高频电流。开关模式电源的主要部件是直流二极管桥,直流滤波器,DC-AC IGBT逆变器,匹配变压器和电容器组。使用DSP微处理器开发板来生成脉冲宽度调制信号以驱动IGBT器件。此外,零电压切换技术和闭环控制用于控制输出功率电平。无限脉冲滤波器和快速傅里叶变换内置于DSP微处理器中,以获得系统谐波的实时频谱分析。可以通过使用红外温度传感器观察工件的温度,并且测量的温度也可以反馈到主DSP微处理器。微处理器的适当输出功率电平调节在工件中产生更好的温度曲线。学生接触到商业有限元磁场分析软件,该软件提供磁通线图形式的磁场的视觉表示和缩放的颜色图。在我们目前的能量传播类中,我们引入并利用InfolyTICA磁体来计算不同频率的磁场强度。该软件包还可以在工件中生成交流电流的动画。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号