首页> 外文会议>SPE Annual Technical Conference and Exhibition >Completion and Production Strategies for Liquids-Rich Wells in Ultra-lowpermeability Reservoirs
【24h】

Completion and Production Strategies for Liquids-Rich Wells in Ultra-lowpermeability Reservoirs

机译:富含液体富含液体井的完工和生产策略

获取原文

摘要

Producing from liquids-rich, ultra-low-permeability reservoirs requires long, horizontal wells with multiple fractures—a situation that demands a better understanding of well-completion practices in relation to reservoir dynamics to maximize benefit. This paper attempts to augment that understanding through a stochastic reservoir modeling approach. A reservoir simulation model for a typical condensate well in the Eagle Ford liquids-rich area was used in a decision-under-uncertainty framework to identify optimal completion and production strategies. The important factors considered are for fractures (length, conductivity, conductivity endurance, and spacing), reservoir (matrix permeability), fluid (saturation pressure and condensate-gas ratio), and well constraints (bottomhole pressure and rates). The effect of these factors, grouped into decision and uncertainty variables, on well productivity were examined to identify the optimal combination of values for each decision variable, considering the impact of uncertainty variables represented by a statistical metric. Completion techniques and proppant selection that maximize well productivity in conventional or even tight formations by maximizing fracture conductivity are not necessarily optimal for ultra-low-permeability reservoirs. The marginal benefit of higher fracture conductivity diminishes rapidly in such reservoirs, and lower-grade proppants can be used. The optimal completion strategy consists of balancing the effects of decision variables based on a clear objective of maximizing reserves or accelerating production or a specific combination thereof. This is because the variables interact; for example, longer fractures both accelerate production and add reserves (bigger drainage volumes), whereas if drainage volumes interfere, closer fracture spacing can accelerate production without increasing reserves. The rapid falloff in production rates for wells in ultra-low-permeability reservoirs encourages operators to establish high initial rates. In liquids-rich wells, such a strategy can leave a large quantity of unproduced liquids in the fractures that also impedes production rates. At a very low drawdown, however, the well may not even produce. Hence, an optimal production strategy maximizing the liquid yield at the surface should be planned and employed. During the fracture-treatment design process, large uncertainties that affect fracture geometry and properties are often ignored, leading to designs that are suboptimal for well productivity in the field. This study considers decision and uncertainty variables related to both completion and production. Insights developed with respect to the interaction of various factors from the study allow for a fuller understanding and provide practical guidelines for completion and production practices. The dynamic behavior of condensate banks in the presence of hydraulic fractures as it relates to production practices is also examined—this has not been discussed in detail in the literature.
机译:从富含液体的超低渗透水库生产需要长时间的水平井,具有多种骨折 - 一种情况,要求更好地了解与储层动态相关的井完成实践,以最大限度地利用益处。本文试图通过随机储层建模方法增强理解。在鹰福特富含型富含液体的典型冷凝水的储层模拟模型用于决策不确定性框架,以确定最佳的完成和生产策略。所考虑的重要因素是用于裂缝(长度,电导率,导电性耐久性和间距),贮存器(基质渗透率),流体(饱和压力和冷凝物 - 气体比),以及井的约束(底孔压力和速率)。考虑到由统计指标表示的不确定性变量的影响,检查了这些因素,分组到决策和不确定性变量的效果,衡量决策和不确定变量,以识别每个决策变量的最佳值组合。通过最大化裂缝导电性最大化常规或甚至紧密地层最大化良好生产率的完井技术和支撑剂选择对于超低低渗透储存器不一定是最佳的。骨折电导率的边际益处在这种储存器中快速减少,可以使用较低级支撑剂。最佳完成策略包括基于最大化储备或加速生产或其特定组合的清晰目标来平衡决策变量的影响。这是因为变量相互作用;例如,较长的骨折都加速生产和添加储备(更大的排水量),而如果排水量干扰,则更接近的裂缝间距可以加速生产而不会增加储备。超低渗透油藏井中生产率的快速下降鼓励运营商建立高初始率。在富含液体的井中,这种策略可以在裂缝中留下大量的未经证实的液体,这也阻碍了生产率。然而,在一个非常低的缩小下,井甚至可能没有产生。因此,应计划并采用最大化表面液体产量的最佳生产策略。在骨折处理过程中,通常忽略影响骨折几何形状和性质的大不确定性,导致设计在该领域的良好生产率次优。本研究考虑了与完成和生产相关的决策和不确定性变量。关于各种因素与研究的互动开发的见解,允许更全面的理解,并为完成和生产实践提供实用的准则。还研究了液压骨折存在下冷凝水库的动态行为,因为它尚未在文献中详细讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号