首页> 外文会议>American Institute of Chemical Engineers Annual Meeting >IN VITRO TOXICITY AND INTRACELLULAR UPTAKE OF FLAME SYNTHESIZED IRON OXIDE NANOPARTICLES: AN ALTERNATIVE TO WET SYNTHESIS METHODS
【24h】

IN VITRO TOXICITY AND INTRACELLULAR UPTAKE OF FLAME SYNTHESIZED IRON OXIDE NANOPARTICLES: AN ALTERNATIVE TO WET SYNTHESIS METHODS

机译:体外毒性和火焰的细胞内摄取合成氧化铁纳米粒子:替代湿合成方法

获取原文

摘要

Superparamagnetic iron oxide nanoparticles, including magnetite (Fe3O4), are widely used in applications such as hyperthermic malignant cell treatment, magnetic resonance imaging, targeted drug delivery, tissue engineering, gene therapy, and cell membrane manipulation. In the current work, superparamagnetic iron oxide nanoparticles were produced using a flame synthesis method, which provides significant advantages over other material synthesis processes. Flame synthesis allows control of particle size, size distribution, phase and composition by altering flame operating conditions and is further capable of commercial production rates with minimal post-processing of the final product materials. This study focuses on the interaction of flame synthesized iron oxide nanoparticles with porcine aortic endothelial cells and compares the results to those obtained using commercially available iron oxide nanoparticles. The materials characteristics of the flame synthesized iron oxide nanoparticles, including morphology, elemental composition, particle size, and magnetic properties, were analyzed by electron microscopy (TEM, ESEM, EDS), and Raman Spectroscopy. The data verified production of a heterogenous mixture of hematite and magnetite nanoparticles, which exhibit superparamagnetic properties. Monodisperse iron oxide particles of 6-12 nm diameter and aggregated clusters of these 6-12nm nanoparticles have been synthesized. Nanoparticle biocompatibility was assessed by incubating flame synthesized and commercially available iron oxide nanoparticles with endothelial cells for 24 hours. Both Alamar blue and Live/Dead cell assays showed no significant toxicity difference between flame synthesized and commercially available nanoparticles. Cells exposed to both types of nanoparticles maintained membrane integrity, as indicated by minimal lactase dehydrogenase release. Endothelial cells imaged by ESEM and confirmed by EDS demonstrated that uncoated flame synthesized nanoparticles are ingested into cells in a similar manner to commercially available nanoparticles. These data suggest that flame synthesized iron oxide nanoparticles are comparable to commercially available nanoparticles for biological applications. Flame synthesis has the advantage of a relatively simple synthesis process with higher purity products and lower time and energy manufacturing costs. Future work will include functionalizing the nanoparticle surfaces for specific biological applications, including specific cell targeting and bioactive factor delivery.
机译:超顺磁性氧化铁纳米颗粒(包括磁铁矿(Fe3O4))广泛用于高温恶性细胞处理,磁共振成像,靶向药物递送,组织工程,基因治疗和细胞膜操纵等应用中。在当前的工作中,使用火焰合成方法生产超顺磁性氧化铁纳米颗粒,其提供了与其他材料合成过程的显着优势。火焰合成允许通过改变火焰操作条件来控制粒度,尺寸分布,相和组合物,并进一步能够具有最终产品的最小处理后的商业生产率。该研究专注于火焰合成氧化铁纳米粒子与猪主动脉内皮细胞的相互作用,并将结果与​​使用市售氧化铁纳米颗粒获得的结果进行比较。通过电子显微镜(TEM,ESEM,EDS)和拉曼光谱分析火焰合成氧化铁纳米颗粒的材料特性,包括形态,元素组合物,粒度和磁性。数据验证了赤铁矿和磁铁矿纳米颗粒的异源混合物,其表现出超顺磁性。合成了6-12nm纳米颗粒的6-12nm直径和聚集簇的单分散氧化铁颗粒。通过将火焰和市售的氧化铁纳米颗粒与内皮细胞孵育24小时来评估纳米粒子生物相容性。 Alamar Blue和Live / Dead Cell测定既显示出火焰合成和市售纳米颗粒之间没有显着的毒性差异。如最小的乳糖酶脱氢酶释放所示,暴露于两种类型的纳米颗粒的细胞保持膜完整性。由ESEM成像并由EDS证实的内皮细胞证明未涂覆的火焰合成的纳米颗粒以与市售的纳米颗粒类似的方式摄取到细胞中。这些数据表明,火焰合成的氧化铁纳米颗粒与用于生物应用的市售纳米颗粒相当。火焰合成具有相对简单的合成过程的优点,具有更高的纯度产品和更低的时间和能量制造成本。未来的工作将包括官能化纳米粒子表面,用于特定的生物应用,包括特异性细胞靶向和生物活性因子递送。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号