【24h】

Laser-based isomer identification in the vapor phase

机译:基于激光的异构体在气相中识别

获取原文
获取外文期刊封面目录资料

摘要

Infrared spectroscopy and mass spectrometry have long been reported as the most selective analytical techniques. Sensitive laser-based detection schemes for infrared spectroscopy such as photoacoustic, cavity ring-down or multipass transmission can be found in a countless number of gas sensing devices. These methods are however not suitable for recording vapors, particularly when high temperatures are involved. This issue has brought us to design and implement a high-temperature multipass cell (HTMC). This novel type of long path absorption cell is heatable up to 723 K and has a variable optical pathlength of up to 35 m. In addition to gases, a condensed sample can be introduced into the cell and analyzed in the vapor phase. The mirrors are separately heated in order to avoid condensation on their optical surface. Furthermore, a compensation mechanism for thermal expansion has been developed to prevent fatal optical misalignments. Infrared spectra of organic compounds in the vapor phase (using single pass heatable cells) reveal strong absorption bands in the mid-IR between 3 and 4 μm. Fingerprinting these rather large molecules requires wide continuous tuning of the laser wavelength. Promising broadly tunable mid-IR laser sources (operating at room temperature) include Cr{sup}(2+)-doped solid-state lasers, in the mid-IR below 3 μm, and external-cavity quantum-cascade lasers, in the mid-IR range above 4 μm. To reach the 3-4 μm range, we further developed a difference frequency generation-based (DFG) laser source (linewidth = 150 MHz). It employs a Q-switched diode-pumped Nd:YAG laser as pump source, and a fiber coupled external-cavity diode laser as signal. Frequency conversion takes place in a periodically poled Lithium Niobate (PPLN) crystal. In gas sensing applications, the DFG radiation is usually tuned over 1-3 cm{sup}(-1) as a result of a simple piezo scan. To meet our requirements, the continuous tuning range of the DFG laser was improved to over 300 cm{sup}(-1) by simultaneously tuning the crystal temperature and the step motor of the external cavity.
机译:红外光谱和质谱已经报告为最选择性的分析技术。用于红外光谱的基于敏感的激光检测方案,例如光声,腔圈或多辅变速器可以在无数数量的气体传感装置中找到。然而,这些方法不适合记录蒸汽,特别是当涉及高温时。此问题带来了设计和实现高温多汇款单元(HTMC)。这种新型的长路径吸收电池可加热至723k,可变光学路径长度高达35米。除了气体之外,可以将冷凝样品引入细胞中并在气相中分析。镜子被单独加热,以避免在光学表面上冷凝。此外,已经开发出用于热膨胀的补偿机制以防止致命的光学错位。气相中的有机化合物的红外光谱(使用单通加热细胞)显示在中外的强吸收带3至4μm。指纹识别这些相当大的分子需要激光波长的宽连续调谐。承诺广泛调谐的中外IR激光源(室温下工作)包括CR {SUP}(2 +) - 掺杂的固态激光器,在3μm以下的中IR和外腔量子 - 级联激光器中中间IR范围高于4μm。为了达到3-4μm的范围,我们进一步开发了一种基于差异频率的(DFG)激光源(LineWidth = 150 MHz)。它采用Q开关二极管泵浦ND:YAG激光器作为泵浦源,以及光纤耦合的外腔二极管激光器作为信号。频率转换在周期性抛光锂铌酸锂(PPLN)晶体中进行。在气体传感应用中,由于简单的压电扫描,DFG辐射通常在1-3cm {sup}( - 1)上调。为了满足我们的要求,通过同时调谐外腔的晶体温度和步进电动机,DFG激光器的连续调谐范围得到改善为超过300cm {sup}( - 1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号