【24h】

Microwave near-fields on atom chips

机译:原子芯片上的微波近场

获取原文

摘要

Microwave near-fields are a key ingredient for quantum information processing with atom chips. Our goal is to realize a quantum gate with the following features: The qubit is encoded in the hyperfine states |1> ≡ |F=1, m{sub}F=-1> and |2> ≡ |F=2, m{sub}F=+1> of 87{sup left}Rb, which are both magnetically trappable and allow for very long coherence lifetimes [1]. Microwave near-fields guided on the atom chip are used to drive single-qubit rotations and provide state-selectivity to the magnetic trapping potential. The quantum phase gate is implemented by state-selective collisions of two qubit atoms in this potential [2]. Besides applications in quantum information processing, microwave near-fields on atom chips can also be used for atom interferometry and chip-based atomic clocks. In our experiment, we have integrated miniaturized microwave guiding structures on an atom chip, using a newly developed lithographic fabrication process for chips with multiple layers of metallization (Fig. 1(a)). The structures are used to generate microwave near-fields with strong gradients on a micrometer scale. Through microwave dressing of atomic hyperfine states, state-selective double-well potentials for 87{sup left}Rb atoms can be created on our atom chip. Such potentials are the basic building block for the collisional quantum phase gate (Fig. 1(b) and [2]). We present the status of our experiment on state-selective coherent manipulation of atoms in the microwave potentials on our chip.
机译:微波近场是用原子芯片的量子信息处理的关键成分。我们的目标是实现具有以下特征的量子门:Qubit在Hyperfine状态| 1>≡| f = 1,m {sub} f = -1>和| 2>≡| f = 2,m {sub} f = + 1>为87 {sup left} Rb,其磁性捕获并允许非常长的相干寿命[1]。在原子芯片上引导的微波近场用于驱动单个Qubit旋转,并为磁捕集电位提供状态选择性。量子相门通过该电位的两个Qubit原子的状态选择性碰撞实现[2]。除了量子信息处理中的应用,原子芯片上的微波近场还可用于原子干涉测量和基于芯片的原子钟。在我们的实验中,我们在原子芯片上具有集成的小型微波引导结构,用于使用具有多层金属化层的芯片的新开发的光刻制造方法(图1(a))。该结构用于在千分尺刻度上产生具有强梯度的微波近场。通过微波敷料的原子高浓缩状态,可以在我们的原子芯片上创建87 {sup} rb原子的状态选择性的双孔电位。这种电位是碰撞量子相栅极的基本构建块(图1(b)和[2])。我们介绍了我们对芯片微波潜力中原子的状态选择性相干操纵的实验的状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号