【24h】

Theory of Spectroscopy and Microscopy with Resonant Radiation Force

机译:具有共振辐射力的光谱学与显微镜理论

获取原文

摘要

A scanning force microscopy is a powerful method to observe the microscopic properties and topography of nanostructures with high resolution [1,2], where the force ranging from 10{sup}(-9) to 10{sup}(-18) N between a probe tip and a sample is detected and utilized. In this field, the control of the external-field-induced force modulation is an important subject because it provides the information on the magnetic or electronic properties of the sample applied with magnetic or electric fields [3,4]. However, there are only few works related to the light-induced force in nano-systems because its mechanism has been unclear [5]. On the other hand, in the field of optical manipulation, it has been clarified that the sufficiently strong radiation force (RF) to handle nanoparticles is induced by light resonant with their electronic excited states [6]. The behavior of such a RF is sensitive to quantum properties of nano-objects depending on their size, shape and internal structure. In particular, in our recent work, we have revealed that the interparticle radiation force (IRF) arises between closely-spaced nano-objects by optical excitation of coupled states of polaritons (light-matter coupled states) in them [7]. The magnitude of IRF can be greater than that of RF for the small inter-object distance, and properties of IRF change reflecting coupling manners of polaritons in objects. Paying attention to these mechanisms, we explore the potential of spectroscopy and microscopy to observe quantum properties in nanoscale samples by detecting IRF.
机译:扫描力显微镜是一种强大的方法,可观察具有高分辨率[1,2]的纳米结构的微观性质和地形,其中力范围为10 {sup}( - 9)至10 {sup}( - 18)n检测和使用探针尖端和样品。在该领域中,对外部场诱导的力调制的控制是一个重要的主题,因为它提供了有关施加磁场或电场的样品的磁性或电子性质的信息[3,4]。然而,只有很少有与纳米系统中的光引起的力量有关,因为其机制尚不清楚[5]。另一方面,在光学操作领域中,已经阐明了用电子激发状态的光共振诱导处理纳米颗粒的足够强烈的辐射力(RF)[6]。根据其尺寸,形状和内部结构,这种RF的行为对纳米物体的量子特性敏感。特别是,在我们最近的工作中,我们透露了通过在其中的耦合(浅型耦合状态)的耦合状态(浅型耦合状态)的光学激发中,在紧密间隔的纳米物体之间产生晶间辐射力(IRF)[7]。 IRF的大小可以大于对物体间距离的小距离的RF的大小,并且IRF变化的性质反映了对象中的极性子的耦合方式。注意这些机制,我们通过检测IRF来探讨光谱和显微镜的潜力,以观察纳米级样本中的量子特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号