【24h】

Atom-surface van der Waals interaction in the nanometric range

机译:纳米级范围内的原子表面范德瓦尔斯相互作用

获取原文

摘要

The atom-surface interaction is one of the simplest prototype of the universal dipole-dipole interaction between neutral bodies and a key phenomenon in the ultimate cohesion of the matter. It scales in C{sub}3 z{sup}(-3) (z: the atom-surface distance) in the electrostatic van der Waals (vW) regime, valid typically for a distance range spanning from ~1nm (to smooth down the structural details of the surface) up to ~1000 nm (i.e. when retardation effects can no longer be neglected). Although this attraction law should cover about 10 orders of magnitude in energy, little has been done to test the predicted dependence; for which various subtle corrections are now currently predicted. Following the blossom of Casimir interaction measurements with study on the distance dependence, a very recent investigation has appeared based upon the reflection coefficients of slow atoms on a magnetic mirror; its spatial resolution is related with the size of the magnetic domain, and allows to explore a 20-100 nm distance to a wall for cold atoms [1]. Here, we report on a spectroscopic investigation of the vW interaction exerted onto the excited atoms of a vapour nanocell, whose nanometric thickness varies locally. Our method is based upon a detailed spectral analysis and a fitting of the simultaneously recorded transmission and reflection spectra, through a comparison with predicted lineshapes of a detailed model. These two signals, originating in linearly independent spatial combinations of the atomic response, are processed independently. They yield however consistent results. A full series of measurements was completed for the high-lying state Cs (6D{sub}(5/2)), for a thickness range 40-130 nm (NB: for a 40 nm thickness, 20 nm is the maximal atom-surface distance). As shown in fig.1, a single set of parameters is sufficient to predict the transmission and the refection lineshapes for various thicknesses, showing [2] that the C{sub}3 coefficient appears to be constant for all thickness within our experimental accuracy, yielding a check of the z{sup}(-3) scaling law. Reproducibility of the spectra for various regions of the nanocell, and an estimate of the possible residual Stark shift, demonstrate that the observed spectral shift and distortions can be traced back to the Cs interaction with the YAG surface itself. The estimated value C{sub}3 value (~ 14 ± 3 kHz.μm{sup}3) is found to be in very good agreement with the common theoretical prediction (~15 kHz.μm{sup}3). This is a remarkable agreement, because various subtleties could affect the accuracy of the prediction, such as the anisotropy in the pumping step (to the resonant level 6P{sub}(3/2)), or corrections related to the nonzero-temperature of the vacuum, or short distances (non retarded) contributions of the electronic core to relevant virtual transitions.~
机译:原子表面相互作用是中性体之间的通用偶极子 - 偶极相互作用的最简单原型之一,以及在物质的最终内聚力中的关键现象。它在静电范德华(VW)制度中的C {sub} 3 z {sup}( - 3)(z:原子表面距离)缩放,通常用于跨越〜1nm的距离范围(平滑表面的结构细节)高达约1000nm(即,当延迟效应不再被忽略时)。虽然这个吸引力法应该涵盖大约10个能量的数量级,但已经少完成了测试预测的依赖;目前目前正在预测各种微妙的校正。随着Casimir相互作用测量的开花与对距离依赖性的研究,基于磁镜上的慢原子的反射系数出现了非常近期的研究;其空间分辨率与磁畴的尺寸有关,并允许探索20-100nm的距离距离冷原子[1]。这里,我们报告对施加到蒸汽纳米壳的激发原子上的VW相互作用的光谱研究,其纳米厚度在本地各种变化。我们的方法基于详细的光谱分析和同时记录的传输和反射光谱的拟合,通过与详细模型的预测线接收进行比较。这两个信号,源自原子响应的线性空间组合,是独立处理的。然而,它们产生了一致的结果。为高位状态Cs(6d {sub}(5/2))完成了全系列测量,用于厚度范围40-130nm(nb:40nm厚度,20nm是最大原子 - 表面距离)。如图1所示,单一的参数足以预测用于各种厚度的传输和折射线,示出了在我们的实验准确性内的所有厚度的C {Sub} 3系数似乎是恒定的,在z {sup}( - 3)缩放法中取出检查。纳米细胞的各个区域的光谱的再现性,以及可能的残留滞留偏移的估计证明了观察到的光谱偏移和失真可以追溯到与YAG表面本身的CS相互作用。发现估计值C {Sub} 3值(〜14±3kHz.μm{sup} 3)与常识的理论预测(〜15khz.μm{sup} 3)非常好。这是一个显着的协议,因为各种微小可能会影响预测的准确性,例如泵送步骤中的各向异性(到谐振水平6p {sub}(3/2)),或与非零温度相关的校正电子核心的真空或短距离(非延迟)贡献相关的虚拟转换。〜

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号