首页> 外文会议>International Kharkov Symposium Physics and Engineering of Millimeter and Sub-Millimeter Waves >DEVELOPMENT OF THE OROTRONS AT MILLIMETER AND SUBMILLIMETER WAVELENGTH RANGE
【24h】

DEVELOPMENT OF THE OROTRONS AT MILLIMETER AND SUBMILLIMETER WAVELENGTH RANGE

机译:在毫米和淹没波长范围内开发ortrons

获取原文

摘要

The frequency range 0.1-1 THz is very attractive for a number of research and technical applications including spectroscopy, diagnostics of various media, communications, etc. However, sources of the coherent radiation in this frequency band are developed much less than the sources of longer waves. For the conventional vacuum tubes based on the stimulated Cherenkov and transition radiation, the main difficulty in the advancement into shorter waves is a dramatic decreasing of the transverse size of the interaction region. Small size also leads to the significant increase of the electron current density. The transverse size of the interaction region can not be increased due to severe mode competition, which can not be avoided in the devices with closed electrodynamical systems. As in lasers and in vacuum tubes based on the Bremsstrahlung radiation (gyrotrons and free electron lasers), this difficulty can be avoided by use of open electrodynamical systems. As for slow-waves devices, this method is used only in the orotron, or diffraction radiation generator (DRG) [1-3]. The open cavity, which is used in orotrons, provides effective selection of transverse modes and allows significant increase of the transverse dimensions of interaction region and increasing the electron current. Therefore, the orotrons and DRGs provide higher output microwave power as compared with backward wave oscillators (BWOs) [4], the most spread oscillators in millimeter and submillimeter wavelength range. Another advantage of the orotron is the high cavity Q-factor that ensures high stability of the frequency. At the same time, the high Q-factor results in a narrow band of electronic frequency tuning.
机译:频率范围0.1-1至THz对于许多研究和技术应用,包括光谱,各种媒体,通信等的诊断等。然而,这种频带的相干辐射的来源比较较长的源波浪。对于基于刺激的Cherenkov和转变辐射的传统真空管,进步到较短波的主要困难是相互作用区域的横向尺寸的显着降低。小尺寸也导致电子电流密度的显着增加。由于严重的模式竞争,不能增加相互作用区域的横向尺寸,这在具有封闭电动系统的装置中不能避免。如在激光器和基于Bremsstrahlung辐射的真空管(陀螺胶和自由相激光器)中,通过使用开放电动系统可以避免这种困难。至于慢波设备,该方法仅在ortron或衍射辐射发生器(DRG)中使用[1-3]。在orotrons中使用的开腔提供有效选择横向模式,并允许相互作用区域的横向尺寸的显着增加并增加电子电流。因此,与反向波振荡器(BWOS)[4]相比,ortrons和DRGS提供更高的输出微波功率,最多的毫米和亚颌下波长范围内的最多扩展的振荡器。 ortron的另一个优点是高腔Q因子,可确保频率的高稳定性。同时,高Q系数导致窄带的电子频率调谐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号